
1 June 1999 Delphi Informant

June 1999, Volume 5, Number 6

Cover Art By: Darryl Dennis

ON THE COVER
6 ActiveX Intranet — Thomas J. Theobald
Because it’s platform-specific, ActiveX isn’t suitable for most Internet
solutions. Intranet solutions, however, are a different story. Mr
Theobald discusses the issues of creating ActiveX components with
Delphi for use on your corporate intranet, and presents three example
projects to help get you started.

FEATURES
12 DBNavigator
ASCII Made Easy — Cary Jensen, Ph.D.
The ubiquitous ASCII file gets no respect, but is nonetheless extremely
useful. Dr Jensen demonstrates — with words and code — how the
Table component makes working with these files a snap.

16 On the ’Net
An HTML Generator: Part II — Keith Wood
Last month, Mr Wood introduced the IHTML object, which provides an
OO approach to generating HTML from a Delphi program. This month,
he finishes by demonstrating its use in three applications.

22 Patterns in Practice
The Builder Pattern — Xavier Pacheco
Mr Pacheco discusses the Builder pattern, and uses it to extend the
application framework he presented last month — a framework that
allows developers to add modules dynamically using Delphi packages.

33 Case Study
HMS Software’s TimeControl — Chris Vandersluis
Mr Vandersluis explains why HMS Software chose Delphi Client/Server
as the development tool for its TimeControl 3 product. A primary reason
was Delphi’s strong C/S tools, including SQL Links.

REVIEWS
30 Youseful

Product Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
36 File | New by Alan C. Moore, Ph.D.

2 June 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Wise Introduces Wise for Windows Installer

Wise Solutions, Inc., working

closely with Microsoft Corp.,
announced the creation of Wise
for Windows installer, a product
that enables application develop-
ers to create installation pro-
grams compatible with
Microsoft’s Windows installer
technology.

Microsoft’s Windows installer
is an application installer origi-
Atypie Introduces Zip Offic

HyperAct Launches eAuthor
nally designed for Windows
2000 (formerly Windows NT
5.0). However, both the devel-
opment environment and the
installations created will support
Windows NT 4.0 and Windows
95/98. Designed to reduce the
administrative requirements of
managing Windows worksta-
tions, the technology plays a key
role in Microsoft’s Zero
e 98

 DB 1.0
Administration initiative for
Windows. The Wise for
Windows installer will enable
developers to create installations
that meet the new Microsoft
standard.

Wise Solutions, Inc.
Price: US$679
Phone: (800) 554-8565
Web Site: http://www.wisesolutions.com
Atypie Software released Zip
Office 98, a Windows
95/98/NT utility that lets you
compress, uncompress, and
manage your files.

Zip Office 98 lets you create
new compressed archives, as well
as add, extract, view, and delete
files. It supports other compres-
sion formats, including lha, arc,
arj, zoo, uue, and others, with-
out using external programs.
You can also convert your com-
pressed files from one compres-
sion format to another.

The Active Zip feature lets you
use your day-to-day programs to
work on compressed files, and
automatically updates those files
inside your compressed archives.

Zip Office 98’s Virtual Folders
let you organize your downloads
from the Internet. While your
downloads are stored in the
same physical folder, Zip Office
98 lets you define logical folders
and sub-folders.

Zip Office 98 provides access to
right-click context menus, allow-
ing you to perform Zip compres-
sion functions directly from
other programs. Its Send menu
contains all your Microsoft
Explorer Send To menu selec-
tions, allowing you to e-mail files
directly from Zip Office 98.

Programmers who would like
to include these file compres-
sion functions within their soft-
ware can use Zip Office 98’s
Open API to extract files
directly from any application
that was built with Delphi,
Access, VB, or other Windows
programming languages.

Atypie Software
Price: US$35 for one computer.
Phone: (877) 353-7297 or
(32)(2) 346 96 21
Web Site: http://www.zipstore.com
HyperAct, Inc. announced
eAuthor DB 1.0, a database
import plug-in for the com-
pany’s eAuthor products
(eAuthor Help and eAuthor
Site), template-based RAD
authoring tools for large-scale
Web sites and HTML Help
projects.

eAuthor DB 1.0 allows the user
to create database queries and
create import operations that use
the data to create and populate
pages in the project from
eAuthor templates. It enables
developers to bind template
properties to database fields, or
use the eAuthor Authoring
Templates Object Model to
script import operations.

eAuthor DB 1.0 provides
step-by-step wizard design,
Visual SQL Builder, a tutorial,
and a user guide that includes
information to help users
import data from databases,
such as Borland dBASE,
Microsoft Access, Microsoft
SQL Server, Corel Paradox,
and more.

eAuthor DB 1.0 can be used
to create hundreds of pages
from database information by
binding database fields to tem-
plate properties; create hierar-
chies of pages during the
import process; define multiple
import stages by setting data-
base break fields; create multi-
ple import operations in every
stage; and control the import
process using JavaScript import
operations that provide access
to every element in the
eAuthor project and the data-
base.

HyperAct, Inc.
Price: US$250
Phone: (402) 891-8827
Web Site: http://www.hyperact.com

http://www.wisesolutions.com
http://www.zipstore.com
http://www.hyperact.com

3 June 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

InnerMedia Ships DynaZIP-AX 4.0

Inner Media, Inc. announced

DynaZIP-AX 4.0, a Zip-
compatible data-compression
toolkit/component for
Windows developers. The
toolkit provides multi-thread-
ed operations, and lends itself
to automated environments,
such as Web servers, backup
systems, etc.

A 32-bit product, it provides a
pair of ActiveX components —
one each for Zip and Unzip —
and is designed for use with
Delphi, Visual Basic, Access,
Visual FoxPro, Visual C++, and
Agni Software Releases Ha

Fe Software & Developmen
any other 32-bit programming
environment that supports
ActiveX components.

The ActiveX components are
self-contained, and do not
require the installation or use of
DLLs beyond those that are
already present on a normal
Windows machine. Included
with DynaZIP-AX 4.0 are sam-
ple programs that show, in
source code form, how to imple-
ment multi-threaded com-
press/decompress operations.

The DynaZIP-AX ActiveX
components provide the full
wk Eye 4

t Announces PIM Flash Com
range of Zip and Unzip opera-
tions, such as read/write/modify,
multi-volume (spanning), easy
internationalization, multiple
callback and progress monitor
options, and much more. The
parent product, DynaZIP 4.0,
contains additional interfaces for
database languages, Delphi,
C/C++, and others.

Inner Media, Inc.
Price: US$149
Phone: (800) 962-2949 or
(603) 465-3216
Web Site: http://www.innermedia.com
Agni Software (P) Ltd.
announced Hawk Eye 4, a new
version of the company’s debugger
for Delphi components.
Features of the new version
include a Delphi Object
Inspector look-alike that dis-
plays all properties, along with
property editors and events; a
Component palette like Delphi
itself; a Form designer that sup-
ports Component Editors; a
property and event log; full sup-
port for packages; the ability to
switch between design-time and
run-time environments with a
single click; the ability to see
your events being fired in the
run-time environment; complete
support for property and com-
ponent editors; and more.

Agni Software (P) Ltd.
Price: Hawk Eye Suite (includes Hawk Eye,
Eye Spy, and Eye Trace), US$400; Eye Spy
and Eye Trace, US$250.
Phone: +91 80 228 6333, 226 8412,
226 2696
Web Site: http://www.agnisoft.com
ponents

Fe Software & Development

released PIM Flash, its suite of
over 20 calendaring compo-
nents for Delphi 3 and 4
developers, including a date
calculator that understands
repeating holidays, and a set of
UI components that make
applications look like a real
PIM. The standard set comes
with a fully customizable
calendar and the extensive
number of properties you can
modify to customize look and
feel. Bitmaps and image lists
are supported as well.

The professional package
includes data-aware versions of
the calendar, day view, and week
view controls, as well as a set of
GUI-oriented controls, such as
the Spiral Splitter, Page Corner,
List Pad, and others.

Fe Software & Development
Price: Standard Package, US$155.95;
Professional Package, US$225.95.
Phone: (818) 838-1932
Web Site: http://www.fesoft.com

http://www.innermedia.com
http://www.agnisoft.com
http://www.fesoft.com

4 June 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Peter Tiemann and HREF Offer SourceCoder 2.56

HREF Tools Corp. expanded

its line of development tools to
include reselling SourceCoder
2.56, a utility created by inde-
pendent developer Peter
Tiemann.

SourceCoder analyzes and
profiles Delphi source code,
giving developers quantitative
code measurements and
enabling them to pinpoint
problematic areas. SourceCoder
analyzes Object Pascal files and
computes metrics for source-
code line counts, calculates
documentation percentages,
and provides complexity mea-
surements. It also checks the
scope of variables and points
SkyLine Tools Announces Ba

Andy Gibson Releases Rend
out ambiguities.
SourceCoder offers additional

functions, including several code
analysis tools; a bug-tracking
database; code formatting
options; automatic generation of
comments per block, function,
or unit; a database of projects
and functions with links to the
code; and many reports. It
rcode Recognition Suite 1.

Pegasus Announces Smarts

erlight
includes Nassi-Shneiderman
charts, with optional profiling
results, which are available in a
form, as a report, and as
HTML.

Peter Tiemann/HREF Tools Corp.
Price: From US$85
Phone: (831) 465-1207
Web Site: http://www.href.com/scoder
0

can Xpress BARCODE
SkyLine Tools Imaging
announced the Barcode
Recognition Suite 1.0, a barcode
recognition toolkit for various
development environments.

The algorithm developed by
SkyLine Tools Imaging is based
on the fuzzy logic approach in
image recognition. This
approach solves the problem of
identifying barcode type and
can decode a barcode value in a
fraction of a second. The user
needs only to define the graphi-
cal image of the barcode as a
graphical file (BMP, TIFF,
JPEG, or any other supported
format), a DIB handle,
HBitmap, or HDC. The suite
supports most of the widely
used barcode standards, includ-
ing EAN13, EAN8, UPCA,
UPCE, 2OF5, 2OF5I, etc.
The Barcode Recognition Suite
comes as a DLL that interfaces
with Delphi, Visual Basic, Visual
C++, and C++Builder.
SkyLine Tools Imaging
Price: US$1,999 (introductory price).
Phone: (800) 404-3832
Web Site: http://www.imagelib.com
Pegasus Software announced the
release of Smartscan Xpress BAR-
CODE, a 32-bit ActiveX control
that reads over 20 industry for-
mats, such as Code39, COD-
ABAR, Interleaved 2 of 5,
UCC128, EAN128, UPC-A, and
more. Smartscan Xpress uses ATL
technology and does not require
MFC. The development kit is less
than 630KB and can be used in
any environment that hosts
ActiveX controls, such as Delphi.

A developer can tell SmartScan
to automatically detect all bar-
codes in an image, or specify an
area within the image. SmartScan
reports the barcode type, posi-
tion, and skew angle for all
detected barcodes. The detected
barcode value is returned as a
string, and Smartscan provides
comprehensive error reporting.
The barcode detection process

can be optimized if you know the
barcode types, the orientation of
the barcode(s), the maximum
number of barcodes, or the color
of the barcodes in an image.

Pegasus Software
Price: US$499
Phone: (800) 875-7709
Web Site: http://www.pegasustools.com
Andy Gibson announced the
release of Renderlight, a com-
ponent for 3D-imaging appli-
cations that includes support
objects and functions.
Renderlight works by having

code pass geometry into the
Renderlight engine, then calling a

rendering method.
Renderlight then handles
the various transformations,
clipping, and scan-line
aspects. When it needs to
color a pixel, it calls an
event handler to pass in all
the information it has about
the polygon — normal
information, view coordi-
nates, object coordinates,
texture coordinates, materi-
als attached, and the polygon
itself. You can then use any of that
information to render the pixel.
There are additional support

objects for geometry storage
(including loading 3DS files with
materials), loading JPEG textures,
ray tracing, shadows, phong or
gouraud shading, reflections, and
procedural textures.

Andy Gibson
Price: Freeware (for personal use).
E-Mail: Renderlight@gibsona.demon.co.uk
Web Site: http://www.gibsona.demon.
co.uk/index.htm

http://www.href.com/scoder
http://www.imagelib.com
http://www.pegasustools.com
http://www.gibsona.demon.co.uk/index.htm
http://www.gibsona.demon.co.uk/index.htm

5 June 1999 Delphi Informant

News
L I N E

June 1999

borland.com and Marotz Team for Record Delphi Certification

borland.com Announces Borland C++Builder 4
San Diego, CA — Marotz, Inc.,
a San Diego-based software
development company,
announced that it has teamed
with borland.com, the software
development tools division of
Inprise Corp., to train, test, and
prepare its developers for the
Delphi developer certification
exam. Marotz programmers had
already undergone a six-month-
long internal training and certi-
fication period when they began
the training and testing for
Delphi. With a pass rate of over
95 percent, 49 developers
became certified, bringing
Marotz’s total of company-wide
certified developers to over 50.

The testing and training was
part of a 10-day Marotz compa-
ny-wide offsite event. Employees
from as far as Ukraine took part
Inprise Announces Repurcha
in the first bi-annual offsite
event. Also attending were three
certified Delphi trainers from
borland.com and a number of
Free Web Site Helps Comp

se of One Million Shares
Marotz clientele.
For more information on

Marotz, visit http://www.
marotz.com.
Scotts Valley, CA —
borland.com announced that
Borland C++Builder 4, a new
version of its C++ development
system, is available through
major software distribution
channels. Borland C++Builder 4
is a front-to-back C++ compiler
and development environment
for creating desktop, client/serv-
er, multi-tier, and distributed
applications that are interopera-
ble with multiple platforms.

borland.com also announced
that customers who purchase
the Enterprise or Professional
versions of C++Builder 4 will
receive a free copy of JBuilder
2, borland.com’s Java develop-
ment tool.

Some of the new features in
Borland C++Builder 4 include
rapid distributed development
with CORBA and COM; a new,
multi-standard flexible C++ com-
piler; support for the latest
ANSI/ISO C++ language specifi-
cations; a customizable
AppBrowser IDE with integrated
two-way visual tool technology;
support for Windows 95/98/NT,
including multiple monitors,
common controls, docking forms
and toolbars, and more; Internet
tools, including ActiveForms for
building Web browser C++ appli-
cations and WebBroker for build-
ing CGI, WinCGI, ISAPI, and
NSAPI C++ applications; a Multi-
tier Distributed Application
Services (MIDAS) Development
Kit, including MIDAS 2; support
for industry standards, including
Oracle8i database server, MFC,
Active Template Library, SQL
Server 7, MTS, Object Windows
Library, and Visual Component
Library; and more.

Borland C++Builder 4
Enterprise has an estimated
street price (ESP) of US$2,499
for new users. Borland
C++Builder 4 Professional has
an ESP of US$799. Borland
C++Builder Standard has an
ESP of US$99.

For more information or to
place orders, call borland.com at
(800) 233-2444, or visit
http://www.borland.com.
uter Job Hunters
Inprise Licenses Visual
dBASE to KSoft

Scotts Valley, CA — Inprise
Corp. announced an exclusive
international licensing agree-
ment with KSoft, Inc., an Xbase
specialist company, to further
develop, support, and market
Visual dBASE, the PC database
development environment for
Microsoft Windows.

With the new agreement, KSoft
assumes the future development,
maintenance, and marketing for
Visual dBASE and DOS versions
of dBASE internationally. KSoft
will also have a joint marketing
relationship with borland.com,
Inprise’s online community for
software developers.

For more information on
KSoft, visit http://www.
dbase2000.com.
Brooklyn, NY — Today’s data
processing, information tech-
nology, and computer profes-
sionals have a new tool to help
them research the current job
market in any city in the United
States. NSI is a full-service data
processing search firm specializ-
ing in the placement of com-
puter system professionals on a
no-fee basis. NSI’s Web site
contains hundreds of job open-
ings currently available with
major banks, brokerage firms,
software and communication
companies, entertainment com-
panies, and manufacturing firms
throughout the country.
Included are details on the vari-
ous pay and benefits, job
descriptions and requirements,
step-by-step instructions on
how to submit a resume, Web
site links, and more. The Web
site also provides the latest stock
market, business, sports, and
weather information.

For more information and to
view the latest openings, visit
http://www.n-s-i.com, or send e-
mail to nsi@idt.net. Job seekers
may also call (718) 252-2306 or
fax (718) 677-6751 to learn more.
Scotts Valley, CA — Inprise
Corp. announced that since
January 1, 1999, it has repur-
chased approximately 1,000,000
shares of stock at an average price
of US$4.86 a share as part of a
stock buy-back program autho-
rized by its board of directors.

Since July, the company has
repurchased approximately
4,500,000 shares at an average
price of US$5.65 out of approxi-
mately 5,900,000 shares autho-
rized for repurchase. On July 21,
1998, the Board of Directors
approved the repurchase of
1,000,000 shares, which was
completed on August 10, 1998.
In September, the board autho-
rized the repurchase of up to 10
percent of the company’s out-
standing shares of common stock
on a fully diluted basis, or approx-
imately 5,900,000 shares, inclu-
sive of the 1,000,000 shares
repurchased in August.
Inprise Announces 10th
Annual Inprise and

borland.com Conference
Inprise Corp. and borland.com
announced the 10th Annual

Inprise and borland.com
Conference, to be held July 17
through 21 in Philadelphia, PA.
Featuring over 200 sessions, the
conference will cover Inprise and

borland.com tools, including
Delphi, JBuilder, C++Builder,
VisiBroker, Application Server,

AppCenter, and InterBase.
Beginning, intermediate, and

advanced developers can choose
from solution tracks covering such
topics as distributed object com-
puting, application deployment
and management, application
design and methodology, and

more. Management track sessions
will focus on the needs of IT direc-
tors and managers, and develop-

ment and project managers.
The conference will also fea-

ture a hands-on computer lab
and exhibit hall. In addition,

pre-conference tutorials will be
available as four-hour sessions.

Attendees will receive an
Inprise/borland.com product

worth up to US$350, as well as
a conference CD-ROM contain-
ing proceedings and code sam-

ples from all the tracks.
The registration cost is US$995

before May 28, 1999, and
US$1,295 after. To register, visit

https://www11.cplan.com/
conf99/regform.htm.

http://www11.cplan.com/conf99/regform.htm
http://www11.cplan.com/conf99/regform.htm
http://www.marotz.com
http://www.marotz.com
http://www.borland.com
http://www.n-s-i.com
http://www.dbase2000.com
http://www.dbase2000.com

6 June 1999 Delphi Informant

On the Cover
ActiveX / Internet Explorer / Delphi 3 and greater

By Thomas J. Theobald
ActiveX Intranet
Building ActiveX Controls for the Corporate Intranet

Delphi is an excellent construction yard for ActiveX controls, but little attention has
been paid to ActiveX for Web applications since their splashy failure in the industry.

As a general-use Internet application delivery system, ActiveX is unsatisfactory. The size,
platform-specific nature, and potentially hazardous content (from unknown suppliers),
all conspire to deny it wide acceptance as an Internet platform. Few users would appre-
ciate the 20 minutes of download time, simply to have the application they wanted
crash — and take their machine with it.
These problems, however, are essentially alleviat-
ed within the corporate firewall. Size and plat-
form independence, the primary failings of
ActiveX, don’t matter much within a corporation
where 10-megabit network connections and
Win32 desktops hold sway. Additionally, with
site-specific security measures available, supply of
Active content to a user’s desktop can be limited
to an organization’s “trusted” sites. In this con-
text, ActiveX offers several benefits not available
to Java, its primary competition:

It’s cached. OCX files brought down from the
Web are brought once, assuming cache-time
and disk allotment aren’t exceeded. Java code
must be downloaded and run with each hit to
a Java-enabled site.
It’s fast. ActiveX files are compiled code, and
run natively as extensions to the clients’
browsers. Java, to date, is interpreted (there are
some exceptions for JIT compilers and the
JBuilder native compiler), and takes between
five and 20 times the amount of time to pro-
vide identical functionality if achievable.
It can be 100 percent Delphi. One of the
things I dislike about Java is that — it’s Java.
I took up Delphi specifically because I didn’t
want to learn C. Perhaps I’m lazy, but I am
reticent to give up the skills it’s taken me a
few years to develop. JBuilder is a great
product, and I do see a future in Java, but I
don’t want to learn the syntax. Installed
development shops that have a lot invested
in Delphi will find the ActiveX route a
potential gold mine in resource usage.
It also shares some benefits with Java:
It’s instantly updated. As soon as a new OCX
file is delivered to the Web site, new hits draw
an updated version of the application.
It’s thin. That’s right, thin. Although even a
small ActiveX application deploys at around a
half a megabyte (the sample application in this
article deploys at 1078KB), when deployed
with run-time packages, that total can shrink to
something really puny (the sample mentioned
deploys to 337KB under run-time packages).
There’s an additional benefit in using CAB file
compression (more on this later).
It can be n-tier. In fact, I recommend this
highly. Because the user has a network con-
nection already (otherwise he or she would
not be able to tag your Web site), there isn’t
anything that should prevent your application
from being aware of a middle-tier server.
Using TClientDataSet in your ActiveX applica-
tion provides two benefits: It maintains the
“Ivory Tower” of data control, and further
“thins” the application by not requiring a
BDE installation or configuration (all this is
maintained at the middle tier). If the only
requirements are the OCX, some run-time
packages, and a copy of Dbclient.dll, your
client should be getting downright skinny.

Design
Although it’s outside the scope of this discussion, I’d
like to stress that design should be the most impor-
tant aspect of any application effort. Generally, the
better the design, the better the final product; a

On the Cover

Figure 1: Creating an ActiveForm shell.
poor design will yield a poor application. Unfortunately, too many
developers start coding with little or no planning.

ActiveX applications generally require more effort than conven-
tional applications when it comes to analysis and design. Here are
some considerations:

Will the control be solely for Web deployment, or will it be an
add-in for other applications? If you’re going to pass the control
to other developers to use in other tools, you may need to sur-
face some properties and/or methods to make it useful.
What data access route will you take? The Dbclient DLL to
connect to a middle tier? Full BDE installation? Will you need
to deploy OLEnterprise or MIDAS? Do you even need a data-
base for this application? This is especially important for
ActiveX controls, because CAB deployment of OLEnterprise
and the BDE require a little more attention than simply ship-
ping disks and/or checking a box in InstallShield.
Does the application contain many features that might not be used
often? The concern is keeping the client thin. If some of the func-
tionality of the application (e.g. maintenance forms) won’t be used
often, pack it away in a DLL and include it in a separate CAB.

Development
First things first: If you want a multiple-document interface (MDI)
application, ActiveForms aren’t going to be much help. If you already
have a means by which to emulate MDI applications in an SDI envi-
ronment, you’ll be all right, but ActiveForms don’t have a FormStyle
property. If you’re good enough with Delphi to descend your own class
that supports MDI, you probably don’t need to be reading this, so I’m
not going to cover it. Because the likelihood is that the application will
get tested a few times before completion, we’ll need to set up the Web

Deployment Options from the Project menu. This will allow us to deter-
mine where the application will get dropped by Delphi. It also gives
the developer an opportunity to isolate the output from the code direc-
tory. Once the settings are satisfactory, the developer can start coding.

We’ll probably need some kind of Web server to offer our still-in-devel-
opment project for our own review. Most of us won’t have access to a
dedicated test-bed Web server. For this reason, I recommend doing
ActiveX Web development on an NT machine with Personal Web
Server or IIS. Personal Web Server is available from the Microsoft Web
site as part of the NT 4 Option Pack at http://www.microsoft.com/
windows/downloads/winntw.asp. There is a version for Windows 95
available from the same site, but I don’t recommend doing this kind of
work in Windows 95 — certainly not with less than 32MB of RAM.

Using Personal Web Server is fairly straightforward, and it comes in
handy for many kinds of design work. It also makes publishing docu-
mentation on the code you write fairly easy, and makes it available to
you for instant changes.

So how do you develop an ActiveX application? The answer is simple:
You don’t. Just develop your application as a standard stand-alone
Delphi application, using the aforementioned considerations. Then,
when it’s finished, create an ActiveForm shell. Close your finished pro-
ject, and create a simple ActiveForm, i.e. select File | New, then choose
ActiveForm from the ActiveX page of the Object Repository. Add the
files from your normal project to the new ActiveForm project. Delphi
creates a new ActiveForm project for you (in many ways, it’s similar to
a DLL project). Then, simply create the main form of your finished
application in the OnCreate event handler of the ActiveForm. Setting
that form’s parent to the ActiveForm and maximizing it will run your
application within the OCX.
7 June 1999 Delphi Informant
This is great when it comes to producing a quick-and-dirty demon-
stration of an existing application, and the client wants to see a
Web-deployment proof-of-concept. You can have a browser-based
version of your application in minutes. This example was created
over an omelet at IHOP. It might not be so great when you think
about possible application architecture issues that haven’t considered
OCX deployment — particularly if this application wasn’t originally
intended for Web deployment. Chances are some “weight” will need
to be removed (by breaking functionality into DLLs, etc.).

There are some differences between normal development under
Delphi and Web deployment. For example, from Run | Parameters,
the developer will need to locate the browser (this article was written
with IE4 in mind; Netscape users can change paths as appropriate)
and insert it in the Host application drop-down. This feature is avail-
able both in OCX and DLL development, and allows debugging of
your control/application through the host application. (Usually, IE
will be found at C:/Program Files/Plus!/Microsoft Internet):

Run | Parameters should also be set to the HTM file deployed
by Delphi when the Web Deploy action is chosen. This isn’t
necessary if you already have a link to it built into your default
page, but can save you from following several tags every time
you try running something.
Get accustomed to using Compile or Build All from the menu, then
choosing Web Deploy to guarantee you get the latest version of your
control. Trusty old 9 might not be what you’re looking for here.
Only the main form needs to be of Active content. All others can
be standard TForm descendants. If you add more active forms,
Delphi will adjust the .HTM file appropriately, and you’ll have a
bunch of empty sockets in a very long page — not fatal, but messy.
This method requires slightly more complex project management,
and presents difficult unit and system testing of the application.

Build Task One: Create an ActiveForm Shell
To make this easy, we’ll copy a demonstration project from the
Delphi 3 installation and turn it into a Web-based application.
First, create a new directory for your ActiveX project and copy the
contents of the demonstration project into it. I’ve chosen TeeChart
(Program files\Borland\Delphi 3\Demos\TEECHART), because
it’s flashy and somewhat elaborate. (This article discusses Delphi 3,
but this technique works for Delphi versions 3 and higher.)

In Delphi, choose File | New, then ActiveForm from the ActiveX
page of the New Items dialog box (see Figure 1). Delphi will gener-

http://www.microsoft.com/windows/downloads/winntw.asp
http://www.microsoft.com/windows/downloads/winntw.asp

On the Cover

Figure 2: The TeeChart demonstration application as an
ActiveForm.

Figure 3: Web deployment options.
ate a new ActiveForm, a type library (which you won’t need to
worry about for the purposes of this exercise), and a project file
(which you also won’t need to worry much about). Save all these
files into the new directory you just created, and give them some
meaningful names. (The projects discussed in this article are avail-
able for download; see the end of this article for details.)

View the project manager (or the project source), and add to the
ActiveForm project all the files you chose from the demonstration pro-
ject. In the ActiveForm, add a private variable to the ActiveForm’s class
definition corresponding to the class of the main form of the demon-
stration application:

TAXTeeChartDemo = class(TActiveForm, IAXTeeChartDemo)
procedure FormCreate(Sender: TObject);

private
// Private declarations.
FEvents: IAXTeeChartDemoEvents;

// A var must be included in the type declaration
// for this stunt.
frmTeeMain: TTeeMainForm;

procedure ActivateEvent(Sender: TObject);

...

You’ll also need to add the appropriate unit to the ActiveForm’s uses
statement, TeeMain in this case. Now, generate a FormCreate event in
the ActiveForm, and from there, create an instance of the form into
the variable you just declared (e.g. frmTeeMain). Finish by parenting
it and giving it some formatting to fit the OCX control:

procedure TAXTeeChartDemo.FormCreate(Sender: TObject);

begin
frmTeeMain := TTeeMainForm.Create(Self);

frmTeeMain.Parent := Self;

frmTeeMain.Height := Self.Height;

frmTeeMain.Width := Self.Width;

frmTeeMain.Show;

end;

Now, go to the Project menu and choose Web Deployment Options. We’ll
take this a page at a time later in the “Deployment” section. The
Project page is the most important right now. Once the top three
entries are made (again, see the section titled “Deployment”), accept
this dialog box and select Project | Web Deploy. There’s no speed but-
ton for this command, so you’ll become familiar with APD.
Once Web deployment is complete, you can tag the HTM file direct-
ly from Explorer, or follow a link you build into your Web site (see
the section titled “Link It All In”). The result is shown in Figure 2.

Generally, following the route of a normal application works just
fine — with no concern over browser location, HTM links, etc.
Simply build the application as you want it. When finished, re-
create the main form as an ActiveForm by taking a blank
ActiveForm and pasting the routines and controls from your
original main form into it. Adding the remainder of the files
from the project finishes the task.

Build Task Two: Transplanting the Code
Again, build your application as a standard Win32 application
with no regard to Web planning, and test it until you feel it
works properly. Then create a new project directory for con-
structing your new ActiveX application. Next, select File | New

and choose ActiveForm from the ActiveX page of the New Items
dialog box. Save the resulting files, giving them and the compo-
nents sensible names.
8 June 1999 Delphi Informant
Now, copy the contents of the application from step 1 into your new
application’s directory. Open the main form of the original applica-
tion while you have the ActiveForm project open. Copy the compo-
nents, events, and methods of the main form into the ActiveForm.
This may require re-creating the events (such as button clicks, etc.),
but because you’ve already written the code, creating the event han-
dlers should be a pretty rudimentary task. Don’t modify anything
Delphi generated for you, unless you know exactly what you’re
doing. Continue with deployment as described in “Build Task One.”

Deployment
Okay, we’ve got the application built. Now comes the part where
we have some tricks to pull. Deployment of an ActiveX application
is fairly simple, but there will be some problems with how Delphi
creates some of the output.

The Web Deployment Options dialog box is where you tell
Delphi how you want your application deployed on a Web page
(see Figure 3). It’s a good idea to complete this early — as one of

On the Cover

Figure 5: The Additional Files page is where needed non-
package files are added.
the first steps in creating your Web application — so you don’t
have to worry about it once the code starts flying.

The options begin with the Project page, where you determine the
physical location of the deployed project. Target dir indicates where the
CAB or OCX files will be placed. You can supply either a direct drive-
mapped path or a UNC path, e.g. C:\Projects\ActiveX Test\Output.
HTML dir indicates where the .HTM file will go as a drive-mapped
path or UNC, e.g. C:\Projects\ActiveX Test\HTML. Target URL is the
listing that will be placed in the .HTM file as a URL path on the
Web server, e.g. http://LocalHost/ActiveXApplication.

There are also General Options to consider on this page: Use CAB file

compression ought to be used, regardless of the size of the OCX file.
Simply put, this crunches down the size of the download to a smaller
file (generally between 50-75 percent of its original size), and makes
it a little faster to download. This is particularly useful when dealing
with users who will be accessing your application with a modem.

Regarding the Code sign project option: Code signing isn’t terribly
important within an intranet, but a couple of things need to be point-
ed out about code signing. First, it isn’t terribly expensive, so if you
intend to serve this application outside the firewall, get a signature.
Corporations such as Verisign can supply digital signature registration
at reasonable cost to both large corporations and individual develop-
ers. Second, once a signature has been obtained, guard it jealously.
Only one developer in a shop should have access to the digital signa-
ture, and it should be considered volatile property of the company.
I’m no specialist on liability law, but I can certainly tell you that a dis-
gruntled employee who Web-deploys “format C:\” with a code signa-
ture from your company is going to cause a lot of problems.

The Deploy additional files option will probably be necessary, especially if
you build your application with run-time packages or DLL files. The
Packages page (see Figure 4) will specify those packages used by your
ActiveForm project. Each package will be individually configurable to
determine whether it’s a Compress in project CAB, or Compress in separate

CAB file. It’s recommended you use separate CAB files to avoid having
to send an overly-large project file, if all that has changed was the pro-
ject. You can also determine whether to Use file VersionInfo, and provide
Target directory and Target URL information. By default, package CAB
9 June 1999 Delphi Informant

Figure 4: The Packages page specifies packages used by your
ActiveForm project.
files will use the same target URL and directory as the project CAB.
This doesn’t change the fact that they’ll probably be loaded into one of
the cache directories, unless you send them elsewhere by specifying their
destination in the INF file.

The Additional Files page is, where necessary, non-package files are
included (see Figure 5). These have the same options and notes as
package files; basically, this page is included to allow the developer to
add run-time files that Delphi isn’t normally aware of. This is where
the BDE and OLEnterprise installation CAB files should be added to
the project, if they’re required.

The developer may wish to consider including a configuration file
with the OCX application, to allow the user to connect directly to a
server via TCP/IP upon running the application. In the ideal cir-
cumstance, the application reads the supplied configuration file, sets
its TDatabase, TRemoteServer, or TMIDASConnection control appro-
priately, and saves its settings to the registry. The TCP/IP stack
should already be present (or the user wouldn’t have been able to
Figure 6: Code signing is provided to allow the developer to
specify the details of the signature file.

http://LocalHost/ActiveXApplication

On the Cover
download the application), and the application can check for its set-
tings in the registry before reading the configuration file.

Code signing is provided to allow the developer to specify the details of
the signature file (see Figure 6). Again, any use of a code signature
should be carefully governed. Consider it the endorsement of your
company (or yourself, if you’re a sole developer).

That’s Web deployment configuration. Not too bad once you’ve
been through it once or twice. There’ll be several additional files
generated in the project. MyApplication.INF is an information
file containing an entry for every file to be deployed to the Web
server for your application to run. It’ll look something like this:

;Delphi-generated INF file for UnzipProjX.ocx

[Add.Code]

UnzipProjX.ocx=UnzipProjX.ocx

dunzip32.dll=dunzip32.dll

[UnzipProjX.ocx]

file=http://localhost/UnzipProjX.cab

clsid={ 33F47DC3-A735-11CF-A090-00A024B18D7A }

RegisterServer=yes

FileVersion=1,0,0,0

[dunzip32.dll]

file=http:// localhost/dunzip32.cab

FileVersion=1,0,0,0

DestDir=11

This file contains information on where to find the individual files
to be deployed with your OCX-based application. The file= entry
of each section denotes the CAB file containing the file for this sec-
tion. The clsid entry refers to the GUID of any ActiveX file (in the
previous example, only the application had Active content to require
a GUID). RegisterServer specifies whether the control should be
registered with the operating system. FileVersion denotes whether
the CAB file will be downloaded to the client. If the CAB file found
has a version earlier than the FileVersion entry, it won’t be sent.

Delphi won’t place a DestDir entry in your INF file; the developer
must add it by hand. DestDir indicates the location of the file
installed by the browser. By default, the OCX file will be dropped
into one of the browser’s cache directories; should other files be
placed there as well, the application may not know where to find
them. DestDir can specify different directories, other than the
cache directories. Specifically, a value of 10 indicates the Windows
OS directory (e.g. C:\Windows on a default Win95 machine, or
C:\Winnt on a standard NT box), while a value of 11 directs the
file to the system directory (e.g. C:\Windows\System, or
C:\Winnt\System32, respectively). This is very important, as pack-
age files and DLLs must be found by the application at run time.

The .HTM file (e.g. MyApplication.HTM) is the HTML “wrap-
per” that will refer to the OCX file generated by Delphi. It will
appear like this:

<HTML>

<H1> Delphi ActiveX Test Page </H1><p>

You should see your Delphi forms/controls in the form below.

<HR><center><p>

<OBJECT classid="clsid: [your guid here]" codebase=

"c:\MyAppDirectory\ActiveFormName.cab#version=1,0,0,0"

width=[width of your ActiveForm]

height=[height of your ActiveForm]

align=center hspace=0 vspace=0>

</OBJECT>

</HTML>
10 June 1999 Delphi Informant
This defines how your ActiveForm application will display itself
in the user’s browser. Referencing this HTML file with a link
from another page is all that is necessary to connect your new
application with the outside world.

If you find more than one <OBJECT> reference in your HTM, it
probably indicates you’ve generated more than one ActiveForm in your
application. This is a mistake I made early on. Only the main form
needs to be of the Active variety. All the other forms in your applica-
tion can be standard TForm descendants with no special attributes.

Other files created as a result of your Web deployment will include
the usual DCUs (unless you’re a fan of OBJ files), RES, DOF, and
backups. Additionally, you’ll see an OCX and a CAB file in the target
directory. If the output directory is one that doesn’t get linked direct-
ly by your Web server, the files you’ll need to place in reach of the
Web server are any CAB files, MyProject.HTM, and MyProject.INF.
The only link necessary to your project is to the HTM file. The CAB
and INF files will take care of themselves.

Link It All In
Now that we’ve gone over the bits and pieces, we only need to
link to our HTM file, and hit it with a browser. Internet
Explorer users won’t have a problem with Active content (other
than the security settings described later in this article), but
Netscape users will need a plug-in to allow them to run an
ActiveX. A commonly used plug-in for this purpose is named
ScriptActive, and a 30-day trial version is available at
http://www.ncompasslabs.com/products.htm.

Security in IE will need to be adjusted to accommodate your
testing. I’ve found the easiest way to accomplish this is to make
your host machine a “trusted site,” and give trusted sites rights to
do whatever they please. The clients downloading your finished
product can probably do this as well, because we’re talking about
intranet deployments, but anyone hitting your control from the
Internet might not be so trusting. They will need to adjust
specifically to deal with your application.

The security settings in Internet Explorer can be accessed from
the View menu, under Internet Options. The second page of the
Internet Options dialog box is devoted to security. In it, any user
who needs to access the ActiveX application will need to be able
to both download and script the ActiveX control containing the
application. Depending on whether the ActiveX application is
signed, the security settings for the appropriate status of the con-
trol should be set to enable or prompt. Generally, I recommend
prompt, but you might get fed up with having to answer “yes” all
the time while developing. It’s your call how you handle this, but
do be careful about accidentally enabling download of content
from anywhere on the Internet.

IE4 users have several security zones from which to choose. As this
topic is geared toward the corporate intranet, low security settings
on the local intranet zone are recommended, and, as I’ve previously
mentioned, it probably would be easiest to add your local host to
the trusted sites list. For any Internet zone, however, I certainly rec-
ommend that the browser should at least prompt the user for down-
load and scripting of content from any site not in the trusted list.

Conclusion
Hopefully, I’ve made this fairly simple. Creating an ActiveX
application is different and sometimes frustrating, but generally

http://www.ncompasslabs.com/products.htm

On the Cover
not much different from creating a standard Windows applica-
tion. I’ve found configuration of the developer’s workstation and
deployment issues constitute the main additional effort when
dealing with ActiveX applications. With luck, you’ll be publish-
ing on the Web in a few hours, and your boss will be more than
happy with the splashy content you’ll be able to generate. I wish
you luck. E-mail me if you have any great success stories with
this; I’d like to hear about them. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUN\DI9906TT.

Tom Theobald is a senior software developer with Segue Technologies of
Alexandria, VA. He began his career with computers as a NetWare engineer,
moving later to include NT and Lotus Notes among his acquired skill set. After
moving into and cleaning up one too many messes, he decided “to hell with
this” and took up software development. Now a certified Delphi instructor, he
makes his trade helping large corporations and government agencies acquire a
more Zen-like attitude toward software development. His favorite contribution to
Inprise was in providing First Union a realistic and achievable image of what the
Delphi/Iprise tool set could provide during training of their first cadre. He can be
reached at theobaldt@seguetech.com with any business inquiries, questions, or
comments. Death threats and other matters of a personal nature can be forward-
ed to eviltom@worldnet.att.net.
11 June 1999 Delphi Informant

12 June 1999 Delphi Informant

DBNavigator
Delphi 1-4 / Database Desktop / ASCII Files

By Cary Jensen, Ph.D.
ASCII Made Easy
Manipulating ASCII Files with the Table Component

ASCII files, the veritable antitheses of database server-based data, are nonetheless
important files for receiving data from a wide range of sources, as well as an

effective medium for sharing data with others. This month’s “DBNavigator” takes a
look at several mechanisms that Delphi provides for reading and writing ASCII files
using the TTable class.
Using tables to read and write ASCII files is not
the only solution provided by Delphi. For
example, you can use typed or untyped files and
perform basic file input/output (I/O) using
functions and procedures of the System unit,
e.g. AssignFile, ReadLn, WriteBuffer, etc. An
advantage to this approach is that applications
created using only these techniques do not
require the Borland Database Engine (BDE).
However, for the database developer whose
applications must use the BDE already, the
TTable class provides a number of handy and
relatively easy-to-use methods for using and cre-
ating ASCII data.

Overview of ASCII Files
ASCII, which stands for the American Standard
Code for Information Interchange, uses 8-bit inte-
gers to represent the characters and control codes
commonly encountered in data. Each ASCII char-
acter or control code has a decimal equivalent. For
example, the decimal value 65 represents an
uppercase A, 97 represents a lowercase a, and 10
represents a line feed.

An ASCII file is a file that contains only ASCII
characters, and is normally considered to hold
only text. What makes ASCII files so interesting
is that they can be created from almost any
source, from “big iron” mainframes to the very
earliest personal computers. This makes them a
convenient format for importing data from
another source, as well as exporting data to be
used by some non-database program, such as a
spreadsheet or word processor.

In this article, I will limit my discussion to three
types of ASCII files: delimited, fixed-length, and
simple text. Delimited ASCII files contain two or
more data fields. A single character, called a sepa-
rator, separates these fields. The most common
character used for this purpose is the comma. The
string data within a delimited file is identified by
being preceded and followed by a delimiting char-
acter (or delimiter), most often the double quota-
tion mark. The following is an example of what a
delimited file may look like:

"Plumber","Mark",1000,5.2,3/4/95

"Ramerez","Pablo",1050,16.75,8/15/97

"Johannson","Christina",998,-25.25,9/1/98

Fixed-length files don’t use separators or delim-
iters. Instead, the data fields are defined by
their position within a record. While the
records in a delimited file are of a variable
length, in a fixed-length file, each record is the
same length. The following is an example of a
fixed-length file:

Plumber Mark 1000 5.23/4/95

Ramerez Pablo 1050 16.758/15/97

Johannson Christina 998 -25.259/1/98

Simple text files do not have individual fields, but
are instead composed of a sequence of characters.

DBNavigator
An HTML file is a good example. The following is an example of a
portion of a simple text file:

DELPHI 4 RELEASE NOTES

This file contains last-minute information about Delphi

4 and additional information that enhances the

usability of Delphi. We recommend you read this entire

file before using Delphi 4.

Simple text files are the easiest to work with, and therefore are dis-
cussed first.

Reading Simple Text Files
To read a simple text file using a Table component, set the Table’s
TableName property to the name of the text file and open the
Table. The TableName property can either include the fully quali-
fied path, or you can enter the path in the DatabaseName proper-
ty and only the file name in the TableName property. Figure 1
shows the Table and DBGrid page of the example TEXTFILE
project with Delphi’s README.TXT file loaded into a Table.
13 June 1999 Delphi Informant

Figure 1: Any text file can be opened using a Table and displayed
in a DBGrid.

Figure 2: A Memo is often the best control for displaying a sim-
ple text file to your users.
(The projects discussed in this article are available for download;
see the end of this article for details.)

While using a Table component to access a text file is simple, it’s
generally used only when your code is going to work with the
text in the text file line-by-line. As you can see in Figure 1, the
DBGrid, although capable of displaying the text in the Table as a
single field, doesn’t provide a view of the data suitable for an end
user. If you merely want to display text from a simple text file, a
Memo component (or other control that encapsulates TStrings) is
better. This can be seen in Figure 2, which shows a Memo com-
ponent from the Memo page of the TEXTFILE project.

All the code associated with the TEXTFILE project can be found in
the OnClick event handler for the Select File to View button:

procedure TForm1.Button1Click(Sender: TObject);

begin
if OpenDialog1.Execute then begin

Memo1.Lines.Clear;

Memo1.Lines.LoadFromFile(OpenDialog1.Filename);

Table1.Close;

Table1.Tablename := OpenDialog1.Filename;

Table1.Open;

end;
end;

The Table and Memo components in the TEXTFILE project are
configured to be read-only. It’s possible, however, to make changes
to the data in a simple text file using a Table or a TStrings object.
Changes made to a Table are posted on a line-by-line basis (unless
CachedUpdates is used), while changes made to the text in a
TStrings must be saved by calling the SaveToFile method.

Using Fixed-length ASCII Files
The use of a fixed-length ASCII file requires a schema file. A schema
file contains a description of your ASCII file’s metadata, including
field names, types, and sizes. The following is an example:

[FIXED]

Filetype=Fixed

CharSet=ASCII

Field1=LastName,Char,20,00,00

Field2=FirstName,Char,20,00,20

Field3=IDNumber,LongInt,11,00,40

Field4=SomeReal,Float,20,02,51

Field5=SomeDate,Date,11,00,71

You will immediately recognize this file as being in the same format
as an INI file. The file begins with the name of the file that it
describes. Delphi assumes the file extension of this file is .TXT.
Furthermore, the schema file must use the same file name as your
ASCII file, but have the file extension .SCH.

On the line following the ASCII file name is the entry
FileType=, which is followed by the type of ASCII file. This type
can either be the value Fixed or Varying (the value is not case-
sensitive). Next, you must identify the character set. In the US,
this value is almost always ASCII.

The remainder of the schema file contains descriptions of each of the
fields in the ASCII file. Each field is described on a separate line that
begins FieldN=, where N is the ordinal position of the field in the table
structure. Consequently, the first field is defined by a line that begins
Field1, the second field by a line that begins Field2, and so forth.

DBNavigator
The definition
of each field
includes five
parts: the field
name, the field
type, the maxi-
mum size of
the field, the
number of dec-
imal places
(this applies
only to float-
ing point value
fields), and the column in which the field begins. The acceptable
field type values are shown in Figure 3.

In the preceding schema file example, the first field is declared to have
the name LastName, be a string field, contain a maximum of 20 charac-
ters, include a meaningless 00 in the decimal part, and finally be found
with 0 columns offset from the start of the record. The fourth field, by
comparison, is declared to have the name SomeReal, be a floating point
number, have a maximum of 20 characters in its value, include two dec-
imal places in its display, and whose value can be found starting at col-
umn 52 (offset 51 characters from the beginning of the record).

You can create your fixed-length schema file manually, or you can have
Delphi generate it for you. Creating a schema file manually involves
entering the properly formatted file definition using any text editor,
such as Notepad or WordPad. Just make sure you save the file as a text
file using the same name as your data file, but with the extension .SCH.

To have Delphi create your fixed-length schema file, use BatchMove
(either a BatchMove component, or the BatchMove method of the
TTable class.). This requires that you already have a BDE-supported
file type that contains the data from which you want to create a fixed-
length ASCII file. If such a file does not already exist, you can create
one using the Database Desktop application that ships with Delphi.
From the Database Desktop select File | New | Table, select Paradox
(or any other file type you are familiar with), and then enter the struc-
ture of your table in the Create dialog box, as shown in Figure 4.

Once you have a table with the desired structure, use the following
steps to create your schema file:
1) In Delphi, create a new application.
2) Place two Table components on your form.
3) Using the DatabaseName and TableName properties of Table1,

Field Type Use For

Char Strings
Float 64-bit floating point numbers
Number 16-bit integer
Bool Boolean values
LongInt 32-bit long integers
Date Date fields
Time Time fields
TimeStamp Date + Time fields

Figure 3: The values for the field type part of
the field definition.
14 June 1999 Delphi Informant

Figure 4: The Create dialog box in the Database Desktop.
select the data file that contains the structure from which you
want to create a schema file. For example, set DatabaseName
to DBDEMOS and TableName to CUSTOMER.DB.

4) Select Table2, and set its TableName property to the fully
qualified file name of the ASCII file for which you want to
create a schema file. Include the entire file path, as well as
the .TXT file extension. For example, set TableName to
C:\Program Files\Borland\Delphi4\Projects\CUSTOMER.TXT.
Also, set the TableType property of Table2 to ttASCII.

5) Now place a Button component on your main form, and
double-click it to create an OnClick event handler. Add one
statement to the event handler created by Delphi:

procedure TForm1.Button1Click(Sender: TObject);

begin
Table2.BatchMove(Table1,batCopy);

end;

6) Run your application and click the button.

That’s it; you’ve created a schema file. If you perform the preceding
steps using the CUSTOMER.DB table in the DBDEMOS data-
base, you’ll find the following schema file in the directory you
entered for your TableName:

[CUSTOMER]

Filetype=Fixed

CharSet=ascii

Field1=CustNo,Float,20,02,00

Field2=Company,Char,30,00,20

Field3=Addr1,Char,30,00,50

Field4=Addr2,Char,30,00,80

Field5=City,Char,15,00,110

Field6=State,Char,20,00,125

Field7=Zip,Char,10,00,145

Field8=Country,Char,20,00,155

Field9=Phone,Char,15,00,175

Field10=FAX,Char,15,00,190

Field11=TaxRate,Float,20,02,205

Field12=Contact,Char,20,00,225

Field13=LastInvoiceDate,TimeStamp,30,00,245

Unlike simple text files, which cannot be edited very easily in data-
aware controls such as the DBGrid, fixed-length ASCII files can easily
be used in any data-aware control. The only limitation is that the files
have no indexes, and therefore cannot be sorted. All records you add are
appended to the end of the file. Also, because there are no indexes, you
cannot define record uniqueness based on a unique key. Finally, these
files cannot be shared because they have no native locking mechanism.

Using Delimited ASCII Files
Delimited ASCII files are only slightly more difficult to use than
fixed-length ASCII files, in part because Delphi will not generate a
schema file for you. Instead, you must write the schema file for a
delimited ASCII file yourself.

There are only three differences between schema files created for delim-
ited ASCII files and those you use for fixed-length files. The first, and
most obvious, is the FileType entry. While you set this entry to Fixed
for a fixed-length file, you set it to Varying for a delimited file.

The other two differences involve defining the field separator and the
string delimiter. The schema file for a delimited ASCII file contains
two additional lines immediately following the FileType= entry. The
first of these is the Separator= entry. You use this to define the char-

DBNavigator

Figure 6: Setting the Date format in the BDE Administrator.
acter used to separate the fields. As mentioned earlier, this character is
often the comma. The second entry is Delimiter=, which you use to
define the character used to enclose strings. In most cases, this will be
the double quote character. The following is an example of a schema
file for a delimited ASCII file:

[DELIMIT]

FileType=Varying

Separator=,

Delimiter="

CharSet=ascii

Field1=LastName,Char,20,00,00

Field2=FirstName,Char,20,00,20

Field3=IDNumber,LongInt,11,00,40

Field4=SomeReal,Float,11,02,51

Field5=SomeDate,Date,11,00,62

While Delphi won’t generate a delimited schema file for you, the simi-
larity between the two schema file types provides you with some assis-
tance. Specifically, using the steps given earlier, you can create a fixed-
length schema file for your delimited table structure, and then make the
three modifications just described to the Delphi-generated schema file.

The use of both a fixed-length ASCII file and a delimited ASCII file
is demonstrated in the SCHEMA project, shown in Figure 5. When
you view the FIXED.TXT table, the FIXED.SCH schema file per-
mits Delphi to read the following ASCII file:

Plumber Mark 1000 5.203/4/1995

Ramerez Pablo 1050 16.758/15/1997

Johannson Christina 998 -25.259/1/1998

When you view the DELIMIT.TXT ASCII file, the DELIMIT.SCH
schema file permits you to view this file:

"Plumber","Mark",1000,5.2,3/4/95

"Ramerez","Pablo",1050,16.75,8/15/97

"Johannson","Christina",998,-25.25,9/1/98

Final Notes
By default, the BDE is configured to display two-digit years in dates.
So, if you write a date field to an ASCII file, only the last two digits of
the year are stored. In most cases, you will want to make sure that
Delphi writes all four-year digits of your date data. To do this, you
must update the Date format setting using the BDE Administrator
located in your system’s Control Panel (see Figure 6).
15 June 1999 Delphi Informant

Figure 5: The SCHEMA project main form.
Also, to display the four-digit year in a date field associated with an
ASCII file, you must instantiate the TFields associated with your Table
component, and set the DisplayFormat property of your Date fields.
For example, setting the DisplayFormat of a TDateField object to
“m/d/yyyy” causes all four digits of the year to be displayed.

Another peculiarity of using ASCII tables is that (at least with my
copy of Delphi 4) the Table’s Active property must be set to False at
application startup. While you may want to set the Active property
to True during design time — so that you can see your data as you
work — you should set Active to False before running your applica-
tion. Use the OnCreate event handler, or some other similar event
handler, to set the Active property to True for your tables that use
ASCII data. This code may look something like the following:

procedure TForm1.FormCreate(Sender: TObject);

begin
Table1.Open;

end;

Conclusion
ASCII files, while not used in day-to-day database applications, provide
an effective medium for passing data to and from Delphi and other
applications. Not only can a Table component be used to read simple
text files, but with the addition of a schema file, the Table component
can read, display, and write delimited or fixed-length ASCII files. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUN\DI9906CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

16 June 1999 Delphi Informant

On the ’Net
Delphi 3, 4 / Interfaces / OOP / HTML

By Keith Wood
An HTML Generator
Part II: Building with IHTML Objects

Last month, we introduced the IHTML objects. These provided an object-oriented
approach to generating HTML from a Delphi program. They made use of an inter-

face to define the generating ability, allowing any object to produce HTML.
This month, we’ll make use of these objects in
three applications. The first converts a Pascal
source file into an HTML page, just as you would
see in the Delphi editor. Next, we’ll produce an
HTML table that contains a directory structure.
Finally, we’ll create a program that allows us to
generate frameset documents in a more visual way.

Pascal Source
To publish a Pascal source file on the Web, all we
need to do is copy the file, add a basic HTML
header and body, and surround the actual text
with a <PRE> (preformatted) tag. But plain text
like this is not as easy to read or skim through as
when it’s presented in the Delphi editor. In the
editor, we can invoke syntax highlighting to allow
us to easily distinguish the elements of the Pascal
code. Wouldn’t it be nice if the Web version
looked just the same?

To accomplish this, we need to be able to recog-
nize the various parts of the Pascal code, such as
reserved words, strings, numbers, etc. For this, we
need a parser. A parser breaks up a stream of char-
acters into individual tokens, or groups of related
characters. It then returns each one to the calling
program so it can be dealt with.

Delphi provides a basic parser, TParser, in the Classes
unit. It’s designed for use with the reading of compo-
nents’ states from the .DFM file or from the exe-
cutable. It also functions quite well with Pascal source
files, breaking the text into tokens identified as sym-
bols (basically, Pascal reserved words and identifiers),
strings (enclosed in quotes), integers and floats, and
all other characters (punctuation and operators).
White space is ignored. This last point is critical; by
ignoring white space, we cannot display the code in
its original format. So we’ll have to roll our own pars-
er, borrowing heavily from this example.
We declare slightly different tokens for our parser,
corresponding to the items we want to highlight:
reserved words, identifiers, comments, strings, and
numbers. An important new property that we add
to the parser allows us to retain all the white space
in the file, treating each such character as a token
in its own right. Setting WantAsSource to True
returns all the text from the source file; setting it
to False skips over any white space.

The parser works by reading a single character,
and from that deciding what sort of token has
been encountered. If the token consists of multi-
ple characters, these are collected and returned as
the TokenString value. An alphabetic character sig-
nals the start of an identifier. Once collated, its
value is compared to a list of reserved words, and
— if found — is flagged as such. This list is set
up during the initialization for the parser unit.

Strings are a little more complex because they can
include control characters, in the form #nn.
Furthermore, when returning the tokens as source,
we want to include the opening and closing
quotes, but when processing as tokens, only these
are stripped from the resulting value.

Comments are another problem area. The original
TParser object doesn’t deal with comments,
because it was designed to parse the .DFM file
contents. But to display the full source code, we
need all the comments as well. For each style of
comment encountered, we must continue reading
characters until we find its end. This is not too
hard for comments using braces ({ }), but
requires a look-ahead for the other styles, because
they each start with a two-character combination.

All the parser functionality is built into the
PasParser unit, allowing it to be easily re-used in

On the ’Net
other projects. First, you set up the input stream (such as directly
from a file, or a memo control via a memory stream), then create the
parser and pass it the stream. Finally, you continually call NextToken,
and process the results until you reach the end of the stream.

Stylish HTML
Once we have our Pascal parser ready, we need to operate on the
tokens returned from it. We want to generate an HTML document
that preserves the syntax highlighting of Delphi. Fortunately, HTML
4 supports style sheets, allowing us to define each of the styles we
require in one place in the document, then apply them throughout.
If we ever want to change those styles, we only need to make a small
modification. The styles that we implement are for reserved words,
strings, comments, numbers, and a default style for the rest of the
source code.

The cascading styles sheets used in HTML 4 provide the ability to speci-
fy a name for a style, then supply that name when we want the style
used. To mark the section of text so displayed, we can surround it with
the tag, which allows us to change styles in-line, as shown here:

if sText =

'Yes'

then

...

The style sheet that corresponds to this could appear like the follow-
ing. We create a class of tags with the name of our style,
then specify its appearance. The default style applies to everything
contained within the <PRE> tag:

<style type="text/css">

<!--

span.reserved { color: rgb(0,0,0); font-weight: bold }

span.string { color: rgb(0,128,0) }

span.comment { color: rgb(0,0,128); font-style: italic }

span.number { color: rgb(255,0,0) }

pre { color: rgb(0,0,0) }

-->

</style>

To retrieve the actual color schemes to be applied, we need to
delve into the registry, down to where Delphi keeps track of such
things. Under Delphi 3, the appropriate key is
HKEY_CURRENT_USER\Software\Borland\Delphi\3.0\Highlight.
Here, we find entries for each of the elements that can be highlighted.
Each entry specifies the foreground and background colors (as integers),
characters indicating font styles (B, U, and/or I), flags for using the
default foreground or background colors, and the indexes within a color
grid for the selected colors.

Under Delphi 4, things have changed quite a bit. We now need to
look under the HKEY_CURRENT_USER\Software\Borland\
Delphi\4.0\Editor\Highlight key, where we find further keys for each
of the syntax elements. Within these lower levels, we find entries for
the color grid indexes for the foreground and background colors, flags
for using the default colors, and separate flags for each font style.

We retrieve these values during the initialization of the containing unit
(IHTMLPas) by calling the LoadFormats routine. The code automati-
cally knows which registry key to look for through conditional com-
piles based on the version of Delphi that is running it. The styles are
saved in internal variables and are supplied to the calling program on
request as a complete style sheet via the PascalStyleSheet function.
17 June 1999 Delphi Informant
All that’s left now is to step through the Pascal source file with
the parser and add each token to a THTMLText object that has
had a style of tsPreformat applied (see Figure 1). For each token,
we check its type and apply one of the highlighting styles, if
appropriate. This is done with the THTMLDivision object, pass-
ing False to the constructor to indicate that we want an in-line
span rather than a block division. The token text must be
“escaped” using the EscapeText function, to ensure that HTML
control characters in the Pascal code are treated correctly. We
then set the tag’s class name to the correct value for the token
and embed it in the basic text.

All this is encapsulated within the THTMLPascal object, which
extends the THTMLBase object from the IHTML collection. It has a
new property that allows us to specify the name of the file to be con-
verted, and provides for setting this directly in the constructor.

The actual HTML generation occurs in the AsHTML method, as
we would expect from an IHTML descendant. The output of the
THTMLPascal object is merely that of the embedded
THTMLText object that we’ve built from parsing the code. Once
{ Return the Pascal source file formatted as HTML. }
function THTMLPascal.AsHTML: string;
var

htx: THTMLText;

hdv: THTMLDivision;

stm: TFileStream;

psr: TPascalParser;

sClass: string;
begin

try
{ Preformat the rest of the source file. }
htx := THTMLText.Create(tsPreformat, '');

try
{ Open specified file. }
stm := TFileStream.Create(FileName, fmOpenRead);

{ And prepare to parse it. }
psr := TPascalParser.Create(stm, True);

while psr.Token <> toEOF do begin
{ Set class of formatting from token type. }
case psr.Token of

toReserved: sClass := 'reserved';

toString: sClass := 'string';

toComment: sClass := 'comment';

toNumber: sClass := 'number';

else sClass := '';

end;
{ Add (formatted) text to document. }
if sClass <> '' then

begin
hdv := THTMLDivision.Create(False, '',

EscapeText(psr.TokenString));

hdv.TagClass := sClass;

htx.Add(hdv);

end
else

htx.Add(THTMLText.Create(tsNormal,

EscapeText(psr.TokenString)));

psr.NextToken;

end;
finally
{ Free resources. }
psr.Free;

stm.Free;

end;
Result := htx.AsHTML;

finally
htx.Free;

end;
end;

Figure 1: Formatting the Pascal source as HTML.

On the ’Net
added to an enclosing HTML document, the job is done. This is
easily achieved, as shown in Figure 2.

The application that accompanies this article (available for download;
see end of article for details) allows us to select a Pascal source file
from anywhere on the disk, then generate an HTML version of it
into the memo displayed on the screen. This can be reviewed before
saving the contents to an output file. Finally, you can open your
style-sheet-enabled browser and view the beautifully formatted code.
18 June 1999 Delphi Informant

{ Create the HTML document. }
htm := THTMLDocument.Create('Pascal source for ' +

filFiles.FileName);

{ Add formatting for Pascal elements. }
htm.StyleSheet := PascalStyleSheet;

{ Add a heading. }
htm.Add(THTMLHeading.Create(1, 'Pascal source for ' +

filFiles.FileName));

{ Format the Pascal source file. }
htm.Add(THTMLPascal.Create(filFiles.FileName));

{ Footer. }
htm.Add(THTMLHorizRule.Create(AsPercentage(100),

ahDefault));

htm.Add(THTMLText.Create(tsNormal,

'Generated by IHTML(c) objects - Written by Keith Wood'));

{ Copy results to the memo field. }
merHTML.Text := htm.AsHTML;

Figure 2: Converting a Pascal source file into an HTML document.

{ Create the HTML document. }
htm := THTMLDocument.Create('Directory listing for ' +

dirDirectories.Directory + '\' + fltFilters.Mask);

{ Add a heading. }
htm.Add(THTMLHeading.Create(1,'Directory listing for ' +

dirDirectories.Directory + '\' + fltFilters.Mask));

{ Then create the directories/files listing. }
htm.Add(THTMLDirectory.Create(dirDirectories.Directory,

fltFilters.Mask, cbxSubdir.Checked));

{ Footer. }
htm.Add(THTMLHorizRule.Create(AsPercentage(100),

ahDefault));

htm.Add(THTMLText.Create(tsNormal,

'Generated by IHTML(c) objects - Written by Keith Wood'));

{ Copy results to the memo field. }
merHTML.Text := htm.AsHTML;

Figure 3: Converting a directory structure into an HTML document.

<html>

<head>

<title>A simple frameset document</title>

</head>

<frameset cols="20%, 80%">

<frameset rows="1*, 2*">

<frame src="./images/athena.jpg">

<frame src="./images/athena.jpg">

</frameset>

<frame src="DemoFramesSource.htm">

<noframes>

<p>This frameset document contains:</p>

Some neat contents

<img src="./images/athena.jpg" border=0

alt="A neat image">

The code that produced this

</noframes>

</frameset>

</html>

Figure 4: An HTML frameset document.
Directory Structure
Displaying a directory structure on the Web can be done through
FTP. But by doing it programmatically, we have much more control
over what is shown and how it appears. We can achieve this by
encapsulating the generation of the directory structure in a new
IHTML object, THTMLDirectory. It’s derived from THTMLBase
because it doesn’t contain any other tags.

We want to be able to specify the starting directory for our genera-
tion, a mask to be used in selecting the files displayed, and a flag
indicating whether we should check into the subdirectories under
this root. These are set up as properties of the object, along with a
constructor to facilitate their initialization.

When the HTML is requested, we use an internal THTMLTable
object to construct the directory representation. Once completed,
we simply return the HTML from the table as the result of the
directory object, as shown in Listing One (beginning on page 20).

The columns in the table show the directory or file name, its size,
and the date and time it was last modified. A header row is built to
display appropriate titles. To improve the presentation of the final
display, we make use of the <COLGROUP> and <COL> tags avail-
able for tables in HTML 4 to specify that the “size” column should
be aligned to the right.

We then start the generation process for the root directory. First,
we retrieve all the subdirectories in the current directory and save
them to a string list. Next, we add all the files that match the
specified mask to that list. Finally, we step through each list item
(conveniently sorted for us) and create a table row filled with its
details. If the entry is a subdirectory and we are scanning all sub-
directories, we call this process recursively to complete the struc-
ture. We keep track of the level of the subdirectories so we can
indent the items found therein, and thus display the inherent
hierarchy within the HTML page.

Now that we’ve encapsulated the directory structure in an HTML-
generating object, producing the actual document is very simple, as
shown in Figure 3.

HTML Frameset
A frameset document describes to a browser how to break up the
screen to show multiple documents. The <FRAMESET> tag
replaces the normal <BODY> tag for the document, and contains a
number of individual frames or embedded framesets. Attributes of
the <FRAMESET> tag indicate how much space is to be devoted to
each row and column.

This space is measured in exact pixels (an integer value), as a per-
centage of the available screen space within the browser (number
and percent sign (%)) or as an amount relative to the other rows or
columns (number and asterisk (*)). For example, see the HTML
page in Figure 4. This document displays two columns, the first
being 20 percent of the total width available, and the second col-
umn occupying the other 80 percent. The first column is then sub-
divided into two rows by an embedded frameset. The first row takes
up one third of the available space, and the other takes up two
thirds. Frame tags then specify the actual contents of those regions.

To cater to browsers that cannot handle frames, the content within
the <NOFRAMES> tag is shown instead. This can include any of
the normal HTML tags. In this case, we provide a reference to one

On the ’Net

Figure 5: Displaying a frameset document during design.

Figure 6: Setting a frameset’s properties.
image, display the second one directly, and have a link to the docu-
ment that filled the third frame.

Often, the coding of a page like this is done by hand, with no imme-
diate feedback about the appearance of the page. The effects of resiz-
ing the browser must wait until the document is loaded for testing.
Coming from the Delphi world, we expect a graphical way of doing
things, and, using the IHTML objects, we can achieve just that.

Frameset Designer
Because we’re ultimately generating framesets and frames, and the
IHTML objects already provide this functionality, we can build on
that foundation and merely extend it. Our two new classes,
TMakerFrameSet and TMakerFrame, are subclasses of
THTMLFrameSet and THTMLFrame, respectively. They inherit the
HTML-generating abilities of their ancestors, and we add additional
properties and methods to interact with the visual display.

Within a frame, we simply track its height and width for display on
the screen, and its frameset parent. For a frameset, we need it to know
its identifying number, the framesets or frames that it contains, and its
immediate parent frameset (if one exists). Additional methods allow
us to change a child frame into an embedded frameset, and vice versa.
We also need the frameset to generate child frame objects once we
supply the dimensions for the rows and columns. And finally, we need
the frameset to interact with our user interface to display its contents.

The user interface is divided into two parts, with the left side con-
taining a tree view that shows the frameset hierarchy within the doc-
ument (see Figure 5). On the right, we display either the properties
for the current node in the tree, a graphical display of the entire
frameset, or the HTML that is generated.
19 June 1999 Delphi Informant
Upon opening, we’re presented with a default frameset document
that contains a single frameset with a single frame. This frameset is
referenced within the program as the base frameset, and is the one
ultimately added to the HTML document. The user then modifies
the properties of the objects within the hierarchy, views the results
on the screen, and generates the final HTML document.

Changing Properties
As properties of the document as a whole, we have the page’s title
and the text to be displayed in browsers that cannot handle frames.
Although the latter is entered as plain text, there’s no reason HTML
tags cannot be placed in the content to format the result.

The properties of a frameset (see Figure 6) allow us to specify
any class or id values, and the number and dimensions of the
rows and/or columns for this object. Buttons enable us to add or
remove rows or columns. For each one, we can select the type of
the size measurement, then enter its actual value. A text descrip-
tion of the assigned size appears in the row or column listbox to
show the results. Pressing the OK button saves any changes and
generates appropriate child frames based on the rows and
columns specified.

Changes to the class or id values update the frameset’s properties
directly, while alterations to rows or columns necessitates a recalcula-
tion of the number of rows and columns belonging to the frameset
and their sizes. Existing frames within the bounds of the new values
are retained, while extraneous ones are destroyed. Any new frames
required are generated with default values.

For a frame, the properties are numerous. First, we have the name of
the frame (to be used as the target of a link on a page) and the URL
from which to obtain the frame’s initial content. Next, we have the
class and id values (as for the frameset), flags to indicate whether the
frame can be resized or has a border, the sizes of margins around the
frame, and how the frame is to deal with scrolling should its contents
be too much to display all at once. Each of these controls updates the
corresponding property within the frame object itself, and will be gen-
erated automatically into the resulting document when requested.

Display and Generation
The frameset object itself manages the display of the frames defined
within this program. One method requests it to fill a tree view with
nodes representing itself and the frames it contains. Another method
causes it to generate panels of the appropriate size for each of its
child frames. These panels are contained within the base panel that
sits on one of the page control tabsheets on the main form.

The calculations involved in determining the correct size for each
frame are fairly complex. We must add up the absolute sizes (actual
pixels) and total the relative sizes for those frames that have them.
Then we can assign the panel dimensions for those panels with
absolute or percentage sizes (taking into account scaling if the
absolute sizes don’t add up to the total available), while keeping track
of the space remaining. This unallocated space is then split up
between those panels with relative sizes. All this is done within the
confines of the dimensions of the panel representing the parent
frameset, allowing it to be applied to embedded framesets, as well.

A method is assigned to each panel that’s so generated, that caus-
es a click on the panel to select the corresponding item in the
tree view, based on its caption. Clicking on an object in the tree
view or in the graphical display selects it, causing its major

On the ’Net
details to be shown in the status bar, and its properties page to
be loaded (if properties are being viewed).

Generating the final document is performed in the usual way. After
adding the base frameset object to the document (assigned to its
FrameSet property), we call the document’s AsHTML method,
which invokes all the others’ in turn.

Because the frame maker objects we use are derived from the IHTML
objects, these can be added directly within the frameset and called
upon to do their bit. We add them in the AsHTML method, rather
than when they are created, because they may change somewhat
before being finally generated. Because we want to retain these objects
after generating the document, we must ensure that the OwnContents
property of the frameset, and the document itself, is set to False.

The resulting document is saved to the specified file, and can then
be viewed as HTML source by selecting the View | View HTML

option on the menu. Or, power up your browser to see what it
looks like when rendered.

Conclusion
The applications presented in this article make use of the
IHTML objects introduced last month to produce customized
HTML documents. By encapsulating the desired behaviors in
new IHTML objects, we greatly simplify the generation of the
final documents. The applications presented here produce docu-
ments displaying Pascal source code, generate pages showing a
directory structure, or create frameset documents visually.

The extensibility of the IHTML hierarchy and the use of an interface
for the main generation ability means we can use them in any num-
ber of situations. Only our imaginations limit the applications. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUN\DI9906KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Occasionally
working with Delphi, he has enjoyed exploring it since it first appeared. You can
reach him via e-mail at kwood@ccsc.com.
Begin Listing One — Directory structure to HTML
{ Generate an HTML document showing the selected

directory structure. }
function THTMLDirectory.AsHTML: string;
var

htb: THTMLTable;

hcg: THTMLTableColumnGroup;

htr: THTMLTableRow;

begin
try

{ Create the table to hold the directories/files. }
htb := THTMLTable.Create(AsPercentage(100), 0);

{ Align the file size column to the right. }
hcg := THTMLTableColumnGroup.Create('', 0, 0);

hcg.Add(THTMLTableColumn.Create('', 0, 0));

hcg.Add(THTMLTableColumn.Create(

'text-align: right', 0, 0));

hcg.Add(THTMLTableColumn.Create('', 0, 0));
20 June 1999 Delphi Informant
htb.Add(hcg);

{ Create a new HTML table row. }
htr := THTMLTableRow.Create;

htr.AlignHoriz := thLeft;

{ And add headings to it. }
htr.Add(THTMLTableHeading.Create('Name'));

htr.Add(THTMLTableHeading.Create('Size'));

htr.Add(THTMLTableHeading.Create(

Indent(1) + 'Modified'));

{ Add the row to the table. }
htb.Add(htr);

{ Generate the directory tree into the table. }
GenerateHTMLForDir(htb, Directory, 0);

Result := htb.AsHTML;

finally
{ Free all the HTML objects. }
htb.Free;

end;
end;

{ Generate directory structure for a specified directory. }
procedure THTMLDirectory.GenerateHTMLForDir(

htb: THTMLTable; sDirectory: string; iLevel: Word);
const

{ To sort directories (d) before files (f). }
sSortType: array [Boolean] of string = ('f', 'd');

var
slsFiles: TStringList; { To sort the files. }
src: TSearchRec; { File details found in search. }
i, iFound: Integer; { Working variables. }
htr: THTMLTableRow; { The current HTML table row. }

{ Is the current file entry a directory? }
function IsDirectory(iAttr: Integer): Boolean;

begin
Result := ((faDirectory and iAttr) <> 0);

end;
begin

try
slsFiles := TStringList.Create;

slsFiles.Sorted := True;

slsFiles.Duplicates := dupIgnore;

if IncludeSubDirectories then begin
{ Find subdirectories in specified directory. }
iFound := FindFirst(sDirectory + '*.*',

faDirectory, src);

while iFound = 0 do
with src do begin

{ If not self or parent directory reference, then
add to list. }

if IsDirectory(Attr) and
not ((Name = '.') or (Name = '..')) then

slsFiles.AddObject(sSortType[True] + Name,

TFileInfo.Create(Name, Size, Time, Attr));

{ Any more? }
iFound := FindNext(src);

end;
FindClose(src);

end;
{ Find matching files in specified directory. }
iFound := FindFirst(sDirectory + '\' + Mask,

faAnyFile, src);

while iFound = 0 do
with src do begin

{ If not self or parent directory reference,
then add to list. }

if not ((Name = '.') or (Name = '..')) then
slsFiles.AddObject(sSortType[IsDirectory(Attr)] +

Name, TFileInfo.Create(Name,Size,Time,Attr));

{ Any more? }
iFound := FindNext(src);

end;
FindClose(src);

{ Now process in sorted order. }
for i := 0 to slsFiles.Count - 1 do

with TFileInfo(slsFiles.Objects[i]) do begin
{ Create a new HTML table row. }

On the ’Net
htr := THTMLTableRow.Create;

{ And add cells to it. }
htr.Add(THTMLTableDetail.Create(

Indent(iLevel) + Name));

if IsDirectory(Attr) then
htr.Add(THTMLTableDetail.Create('Dir'))

else
htr.Add(THTMLTableDetail.Create(IntToStr(Size)));

htr.Add(THTMLTableDetail.Create(Indent(1) +

DateTimeToStr(FileDateToDateTime(Time))));

{ Add the row to the table. }
htb.Add(htr);

{ Recurse into subdirectories if appropriate. }
if IsDirectory(Attr) and IncludeSubDirectories then

GenerateHTMLForDir(htb, sDirectory + '\' + Name,

iLevel + 1);

end;
finally

{ Tidy up. }
for i := 0 to slsFiles.Count - 1 do

slsFiles.Objects[i].Free;

slsFiles.Free;

end;
end;

End Listing One
21 June 1999 Delphi Informant

22 June 1999 Delphi Informant

Patterns in Practice
Builder Pattern / Frameworks / Packages / Delphi 4

By Xavier Pacheco
The Builder Pattern
Extending Frameworks — Building Add-in Packages

In the March, 1999 and May, 1999 issues of Delphi Informant, I presented the
Singleton and Template Method patterns. They are likely to be widely used because

they are easy to implement, and can be applied to a wide range of problems. This
month, we’ll discuss an equally useful pattern, although one that is slightly more com-
plex: the Builder pattern.
We’ll discuss the Builder pattern, and use it to
extend the application framework presented last
month. This framework will allow developers to
work on separate modules that may be added
dynamically to compiled applications by using
Delphi’s package technology.

As I study patterns, I find it essential to think
about them in the context of the language and
object framework within which they’ll be imple-
mented. It seems that much of what is available
in the form of patterns literature presents pat-
terns from a purely object-oriented context, not
taking into account a particular framework, e.g.
VCL, MFC, OWL, etc. This isn’t a criticism,
and I recommend that you make the effort to
understand these patterns from this perspective.
This column, however, intends to present pat-
terns from a different perspective; the goal is to
illustrate how and when to use and implement
patterns within the context of Delphi and the
VCL framework.

Before we get to the Builder pattern, however, we
need to discuss two aspects of patterns: pattern
classifications and how patterns are described.

Pattern Classifications
Patterns can be classified as one of three types: cre-
ational, structural, or behavioral. Creational pat-
terns have to do with how the objects making up
the pattern are created; structural patterns have to
do with how the objects within the pattern are
composed; and behavioral patterns have to do
with how the objects interact with each other, and
the clients of those patterns.

The Singleton and Builder patterns are creational
patterns, and the Template Method pattern is a
behavioral pattern. Keep in mind that a pattern is
often a part of another pattern or creates another
pattern. For example, the Builder pattern is often
used to create a Composite pattern, which is a
structural pattern.

Pattern Descriptions
I’ve examined several books on patterns and have
determined there is no single rule by which pat-
terns are described. However, each of the sources
is consistent in how it describes each pattern by
using a uniform set of elements. These elements
consist of descriptions, definitions, pictures, and
examples (see Figure 1).
Element Meaning

Name Name by which a pattern will be referred to by developers. It
should match the pattern’s purpose.

Classification Classification to which the pattern belongs: creational, struc-
tural, or behavioral.

Synopsis Concise sentence describing the pattern.
Intent, Statement describing what the pattern does, or the problem the
Problem, or pattern addresses.
Context
Motivation Description of how the pattern applies itself to a given problem.
Structure Typically, graphical representations of the pattern using some

form of object-modeling notation, such as UML. This may also
present a definition of the participants.

Forces Considerations of the problem that lead to the solution.
Solution Describes how the pattern applies itself to the problem and

addresses the various forces.
Applicability Areas where the pattern may be used.
Known Uses Areas where the pattern is known to be used in the context of

the language being discussed.
Consequences Pros and cons of using the pattern.
Collaborations How objects (participants) of the pattern interact to accom-

plish a solution.
Examples An example of the pattern’s implementation in a given language.
Related Other patterns that resemble, or might be used instead of,
Patterns the pattern.
Participants The elements (objects, interfaces) that make up a pattern’s

structure.

Figure 1: Pattern description elements.

+Create()

Client Director

Builder

+Create()

ConcreteBuilder2

+Create()

ConcreteBuilder3

+Create()

ConcreteBuilder1

Product2 Product3Product1

1..1

1..1uses

uses

creates creates creates

Figure 2: The Builder pattern structure.

XWModXX40.bpl

XWExpt40.bpl

Shell Application

XWViews40.bpl

run time

run time

run time/design time

Figure 3: How the Shell Application uses packages to obtain
add-in functionality.

Patterns in Practice
For this and future articles, I’ll use a variation of this more formal
method of describing the patterns I present, including only the Name,
Classification, Synopsis, Applicability, Structure, Known Uses, and
Examples (see the sidebar “Inside the Builder Pattern” on page 26).
However, I do encourage you to refer to those sources cited at the end
of this article for a more complete description of the patterns I discuss.

Participants
There are five participants to the Builder pattern, including the
Client (i.e. the user of the pattern), as shown in Figure 2. The func-
tions of these participants follow:

The Director uses a Builder interface to construct Concrete
Builders. The Director may also act as an intermediary between
the Client and the Builder.
The Builder is an abstract interface that defines the methods
required to tell it how to construct itself.
The Concrete Builder is a specific implementation of the Builder
interface that implements its abstract construction methods.
The Product is the item being built.
The Client is the user of the item being built — the complex object.

Structure Description
Notice that the Client has a one-to-one association with the
Director. The Client makes a request to the Director for a specific
Product. The Director, in response to this request, uses the abstract
Builder interface to construct the Concrete Builder based on the cri-
terion given by the Client. The Concrete Builder then returns an
instance of the Product. This result may go directly back to the
Client, or it may go through the Director for the Client to use.

If you’re familiar with patterns, you may recognize that this structure is
similar to the Abstract Factory and the Composite patterns. The
Abstract Factory is another creational pattern, very much like the
Builder pattern, but it differs in the way its resulting product is pre-
sented to the Client. Instead of providing a single, self-contained prod-
uct, the Abstract Factory returns pieces that make up a product. It’s up
to the Client or the Director to construct these pieces. (I’ll discuss the
Abstract Factory in a later article.) The Composite is a structural pat-
tern used to compose objects into hierarchical structures. In fact, the
Builder and Abstract Factory are often used to create Composites.

Known Uses
The classical example of the Builder pattern is that of a graphics
image viewer, where the viewer may render images in multiple for-
23 June 1999 Delphi Informant
mats. The viewer doesn’t concern itself with the type of image to
render, but rather the process by which it obtains an image. The
viewer uses a Director that manages the creation process of each
image format. A builder object, one for each format of image, han-
dles an image’s specific creation logic.

Another use — to which Delphi developers may more closely relate — is
that of Experts. It’s possible to add behavior to the Delphi IDE by pro-
viding modules in the form of packages. These modules contain the
objects that implement pre-defined interfaces that are part of the Delphi
Open Tools API. The structure of Open Tools is similar to that of the
Builder pattern. This add-in capability is a powerful feature that allows
anyone to enhance the IDE with additional functionality. This capability
can be incorporated into applications you build using a technique similar
to that of the Open Tools API. The rest of this article presents an exam-
ple of how to implement such a framework using a Builder pattern.

Add-in Packages Example
The add-in packages demonstration I’ve written illustrates a simpli-
fied method by which you can add functionality to an application
dynamically — without having to modify and re-compile the appli-
cation. I do this using Delphi packages.

Before packages came about, we would have accomplished this by
using a similar method through dynamic-link libraries (DLLs). One
of the problems with DLLs is that they’re not VCL aware. It’s almost
impossible to effectively decompose functionality from the applica-
tion. You would have to deal with the mess of exporting VCL
objects from the DLL.

This isn’t a problem with packages. Although packages are DLLs, they’re
special-purpose DLLs that know about the VCL. Delphi and its applica-
tions know how to obtain the run-time type information about objects
contained within packages. Therefore, forms and other VCL objects in
your packages can easily be integrated into your Delphi applications.

Package Layout for the Shell Application
Take a look at Figure 3. It shows how the Shell Application uses
packages to obtain add-in functionality. We’ll discuss these packages
in-depth in this section.

Patterns in Practice

Shell Application

TXWModuleManager

1..1

0..1

TXWModuleInterface

TXWModuleInterfaceXX TViewForm

Figure 4: The Builder pattern structure for add-in packages.

Figure 5: Shell Application with one of the modules loaded.
XWViews40.bpl. This lowest-level package is a run-time and
design-time package that contains the TViewForm from last
month’s article. Recall that this form overrides the methods to
allow it to be instantiated as both an independent form, and as a
contained form. This package will be used by both the
XWExpt40.bpl and XWModXX40.bpl packages. (Note: The
only reason XWViews40.bpl is also a design-time package is
because the TViewForm is going to serve as the ancestor to all
forms used by modules. You may want to write a Form Expert or
install the form into the repository, so you don’t have to open the
TViewForm unit every time you create a new project.)

XWExpt40.bpl. The Module Interface is defined as a semi-abstract
class in this package. This package also contains the definition of the
Module Manager. It’s used by the Shell Application and by each
module instance (add-in package). The Module Manager serves the
purpose of the Director in the Builder pattern structure, whereas the
Module Interface serves the purpose of the abstract Builder class.

XWModXX40.bpl. Module instances that implement the Module
Interface are contained in the XWModXX40.bpl package, where the
“XX” in the package name would be replaced by a two-digit identi-
fier. For example, package 1 would be XWMod0140.bpl, and pack-
age 2 would be XWMod0240.bpl. You may add any number of
these packages to the Shell Application. These modules must con-
tain the implemented Module Interface and any additional forms
that adhere to the TViewForm definition. Also, this module can
contain any additional data modules or other forms necessary to
provide the module-specific code. The XWModXX40.bpl packages
are run-time packages that are dynamically loaded by the Module
Manager object. They’re registered in the Windows registry so the
Shell Application will know of their existence.

Add-in Builder Structure Description
Figure 4 shows how the Builder pattern is structured for add-in pack-
ages. The Shell Application (the Client) has a one-to-one association
with the XWModuleManager (the Director). The Shell Application
makes requests to the Module Manager to load a particular package.
The menus that allow the user to select the package to load are built
dynamically and are added to the Shell Application’s main menu at run
time, based on information contained in the Windows registry. It’s the
Module Manager that searches through the Windows registry, and
builds a menu that is merged with the Shell Application’s menu. The
Module Manager also provides the OnClick event handlers for these
menu items that load the corresponding package.

The Module Manager has a one-to-one association with the
TXWModuleInterface class used to refer to the currently loaded mod-
ule. Each TXWModuleInterface instance implements the methods
required to build itself. This includes the construction of any sub-
forms, data modules, menus, and toolbars that get integrated with
the Shell Application. My code shows how the Shell Application pro-
vides a parent TMenuItem for module-level (package), and view-level
(form) menus. The Shell Application also provides a parent container
for a module-level and view-level toolbar. Toolbars provided by these
objects are integrated into the Shell Application’s main Coolbar com-
ponent. Figure 5 shows what the Shell Application looks like when
one of the modules is loaded.

The TXWModuleInterface contains the TViewForms that get inte-
grated into the Shell Application by keeping track of a current view
form. When the user changes pages on the Shell Application, the
View Form for that page is created and displayed within a Panel
24 June 1999 Delphi Informant
component. This is similar to how we achieved form containment in
last month’s article.

The code used to make all of this work is somewhat extensive to
explain in text. Therefore, I’ve included ample remarks in the
source, where I can more clearly explain what I’m doing. (The com-
plete source for the demonstration application discussed in this arti-
cle is available for download; see the end of this article for details.)
In the following sections, I’ll highlight some key points.

Loading and Unloading Packages
When the user selects one of the modules from the Shell Application’s
main menu, the Module Manager loads the package specified after
unloading the currently loaded package. The Delphi routines to load
and unload a package are LoadPackage and UnloadPackage. You’ll see
this code in the TXWModuleManager.LoadModule and
TXWModuleManager.UnloadModule methods in Figure 6. These two
routines function exactly like the LoadLibrary and UnLoadLibrary API
functions in that they load/unload the specified module. LoadModule
returns a valid library handle if it succeeds.

Class Name Retrieval of the Module Interface Class
Neither the Shell Application nor the Module Manager know of the
class names of the implemented modules contained in the module
implementation packages. Therefore, I store these class names in the
Windows registry (see Figure 7).

Patterns in Practice
Ideally, the package would support a function such as
GetPackageProcAddress to retrieve an address to an exported routine —
just as with DLLs. This isn’t the case, although it’s possible to pull
routine names out of a package by performing some hairy, compiler-
specific voodoo. Perhaps this is a topic for another article, but for
now, I’ll opt for the much simpler technique of putting each class
name in the registry. (A .reg file is included in the download file to
25 June 1999 Delphi Informant
facilitate this process.) To retrieve this class name, I wrote the helper
function GetModuleClassName:

function GetModuleClassName(

const AModuleName: string): string;
{ The class name of the TXWModuleInterface is provided in

the registry. This method retrieves that class name. }
var

IniFile: TRegIniFile;

begin
IniFile := TRegIniFile.Create(cModRegLocation);

try
Result := IniFile.ReadString(RemoveExt(AModuleName),

'ClassName', EmptyStr);

finally
IniFile.Free;

end;
end;

Figure 8 highlights the module class name entry in the Registry Editor.

Instantiating Classes Contained in Packages
Now that the Module Manager knows of the class name, how can it
actually instantiate the class? To create a class, you need a class refer-
ence. The FindClass and GetClass functions return class references
that are registered with the streaming system. The following code
snippet illustrates how the class name is obtained, and how the class
instance is created:

// Return the class name that needs to be instantiated
// into ModClassName.
ModClassName := GetModuleClassName(AModuleName);

XWMIC := TXWModuleInterfaceClass(FindClass(ModClassName));

FCurrentModule := XWMIC.Create(FViewParentWindow,

FModuleLevelMenuParent, FModuleLevelTBParent);
Figure 7: The module registry entries.

Figure 8: The module class name entry.
procedure TXWModuleManager.LoadModule(

const AModuleName: string);
var

ModClassName: string;
XWMIC: TXWModuleInterfaceClass;

begin
// Call any event handlers provided by the client.
if Assigned(FBeforeLoadModule) then

FBeforeLoadModule(Self);

// Unload any previously loaded modules.
if FCurrentModuleHandle <> 0 then

UnloadModule;

try
// Load the specified module.
FCurrentModuleHandle := LoadPackage(AModuleName);

// Return the class name that needs to be instantiated
// into ModClassName.
ModClassName := GetModuleClassName(AModuleName);

{ Create an instance of the class using the FindClass
procedure. Note, this requires that the class already
be registered with the streaming system using
RegisterClass. This is done in a unit initialization
section in each module package. }

XWMIC :=

TXWModuleInterfaceClass(FindClass(ModClassName));

FCurrentModule := XWMIC.Create(FViewParentWindow,

FModuleLevelMenuParent, FModuleLevelTBParent);

if Assigned(FAfterLoadModule) then
FAfterLoadModule(Self);

{ Load the module's menus and toolbars. }
FCurrentModule.LoadModuleLevelMenu;

FCurrentModule.LoadModuleLevelToolbar;

except
on E: Exception do begin

UnloadModule;

raise;
end;

end;
end;

procedure TXWModuleManager.UnloadModule;

begin
if FCurrentModuleHandle <> 0 then begin

if Assigned(FBeforeUnloadModule) then
FBeforeUnloadModule(Self);

{ Unloaded any module level and view level menus before
unloading and freeing this module. }

if FCurrentModule <> nil then begin
FCurrentModule.UnloadModuleLevelMenu;

CloseView;

FCurrentModule.Free;

FCurrentModule := nil;
end;
// Unregister any classes provided by the module.
UnRegisterModuleClasses(FCurrentModuleHandle);

// Unload the module package.
UnloadPackage(FCurrentModuleHandle);

FCurrentModuleHandle := 0;

// Call any event handlers provided by the client.
if Assigned(FAfterUnloadModule) then

FAfterUnloadModule(Self);

end;
end;

Figure 6: The LoadModule and UnloadModule procedures.

procedure TMainForm.FormCreate(Sender: TObject);

begin
{ Create the FModuleManager and assign to its properties

the menus and panels that will house the module and
view level menus and toolbars. }

FModuleManager := TXWModuleManager.Create;

FModuleManager.ModuleLevelMenuParent := mmiViewSelect;

FModuleManager.ModuleLevelTBParent := pnlModule;

FModuleManager.ViewParentWindow := pnlMain;

FModuleManager.ViewMenu := mmiActions;

FModuleManager.ViewTBParent := pnlViews;

// Merge the Module Manager's menu.
mmMain.Merge(FModuleManager.ModuleManagerMenu);

// Hook up the event handlers for After and Before
// loading modules.
FModuleManager.AfterLoadModule := AfterLoadModule;

FModuleManager.BeforeUnloadModule := BeforeUnloadModule;

end;

Figure 9: The main form’s OnCreate event handler is responsi-
ble for merging the menus.

Patterns in Practice
The key word here is “registered.” When a package is loaded,
none of the classes it defines are registered with the loading
applications. This is equally the case for component writers who
should be well familiar with the RegisterComponent method. It’s
the registration methods that expose the classes to the calling
application. Each package must properly register the module
interface class when the package is loaded. This can be done in
the initialization section of the unit that defines the module
interface class.

Likewise, the class must also be unregistered when the package is
unloaded. This can be done in the unit’s finalization section. The
calls made are RegisterClass and UnRegisterClass, respectively:

initialization
RegisterClass(TXWMod01Interface);

finalization
UnRegisterClass(TXWMod01Interface);

One of the things I do when I unload the package in the
TXWModuleManager.UnloadModule method is to call
UnRegisterModuleClasses. This ensures that all classes registered
by a module get unregistered.

Menu Merging
In the add-in package demonstrations, there are several layers of
menus that get merged with the Shell Application’s main menu.
To be technically accurate, only the Module Manager’s menu gets
merged with the Shell Application’s main menu. I use the normal
merging technique through the TMainMenu.Merge method (see
Figure 9). To merge the other layers (Module, View), I must
copy these menus and programmatically add them to the main
menu. The reason for this is because only one menu can be
merged using the Merge method.

In addition to the Shell Application’s main form, the Module Manager,
and the Abstract Module Interface (see Listing One, beginning on this
page), the code that accompanies this article contains an example
implementation of the Module Interface (see Listing Two, beginning
on page 27). The code provided includes two implementations of the
module interface, including one that contains database access.
26 June 1999 Delphi Informant
Conclusion
The Builder pattern is a useful
creational technique for structur-
ing complex objects resulting in a
self-contained product. In my
next article, I’ll examine the
Abstract Factory, a pattern similar
to the Builder, but with a differ-
ent outcome. Finally, many
thanks to Anne Pacheco for her
grammatical review of this, and
many other of my articles. ∆

Sources
Design Patterns: Elements of Reusable
Object-Oriented Software by Erich
Gamma, et al. [Addison-Wesley,
1994]; The Design Patterns
Smalltalk Companion by Kyle
Brown, Bobby Woolf, and Sherman
R. Alpert [Addison-Wesley, 1998];
Patterns in Java, Volume 1 by Mark
Grand [Wiley Computer
Publishing, 1998].

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUN\DI9906XP.

Inside the Builder Pattern

Name: Builder Pattern

Classification: Creational

Synopsis: “Separate the construc-
tion of a complex object from its
representation so that the same
construction process can create dif-
ferent representations” (from
Design Patterns: Elements of
Reusable Object-Oriented Software
by Erich Gamma, et al.[Addison-
Wesley, 1994]).

Applicability: Used where the
logic required for building complex
objects is separated from the client
of that object. Also, this construction
logic must facilitate the building of
multiple representations, or, rather,
variations of complex objects that
may work with that same client.

Structure: Shown in Figure 2.

— Xavier Pacheco

Xavier Pacheco is president and chief consultant of Xapware Technologies Inc.,
where he provides consulting services and training. He is also the co-author of
Delphi 4 Developer’s Guide published by SAMS Publishing. You can write Xavier
at xavier@xapware.com or visit http://www.xapware.com.
Begin Listing One — MainFrm.pas
unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Menus, ToolWin,

ComCtrls, xwModExpt, ImgList;

type
TMainForm = class(TForm)

mmMain: TMainMenu;

mmiFile: TMenuItem;

mmiExit: TMenuItem;

mmiHelp: TMenuItem;

mmiAbout: TMenuItem;

mmiHowHelp: TMenuItem;

mmiContents: TMenuItem;

cbMain: TCoolBar;

tbShell: TToolBar;

tbcMain: TTabControl;

stsbrMain: TStatusBar;

pnlMain: TPanel;

mmiViewSelect: TMenuItem;

mmiActions: TMenuItem;

tbtn1: TToolButton;

tbtn2: TToolButton;

imMain: TImageList;

pnlModule: TPanel;

http://www.xapware.com

Patterns in Practice
pnlViews: TPanel;

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure tbcMainChange(Sender: TObject);

procedure FormClose(Sender: TObject;

var Action: TCloseAction);

procedure mmiExitClick(Sender: TObject);

procedure mmiAboutClick(Sender: TObject);

private
FModuleManager: TXWModuleManager;

procedure OpenView(const AViewNum: Integer);

{ : After load module event handler. }
procedure AfterLoadModule(Sender: TObject);

{ : Before Unload module event handler. }
procedure BeforeUnloadModule(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);

begin
{ Create the FModuleManager and assign to its properties

the menus and panels that will house the module and
view level menus and toolbars. }

FModuleManager := TXWModuleManager.Create;

FModuleManager.ModuleLevelMenuParent := mmiViewSelect;

FModuleManager.ModuleLevelTBParent := pnlModule;

FModuleManager.ViewParentWindow := pnlMain;

FModuleManager.ViewMenu := mmiActions;

FModuleManager.ViewTBParent := pnlViews;

// Merge the Module Manager's menu.
mmMain.Merge(FModuleManager.ModuleManagerMenu);

// Hook up the event handlers for After and Before
// loading modules.
FModuleManager.AfterLoadModule := AfterLoadModule;

FModuleManager.BeforeUnloadModule := BeforeUnloadModule;

end;

procedure TMainForm.FormDestroy(Sender: TObject);

begin
// Unmerge the Module Manager's menu and free it.
mmMain.UnMerge(FModuleManager.ModuleMainMenu);

FModuleManager.Free;

end;

procedure TMainForm.OpenView(const AViewNum: Integer);

begin
{ When a new view (Form) is loaded, set its parent window

to that of the Module Manager's parent window. }
if FModuleManager.CurrentModule <> nil then

FModuleManager.OpenView(AViewNum, True);

end;

procedure TMainForm.tbcMainChange(Sender: TObject);

begin
OpenView(tbcMain.TabIndex)

end;

procedure TMainForm.FormClose(Sender: TObject;

var Action: TCloseAction);

begin
FModuleManager.UnloadModule;

end;

procedure TMainForm.AfterLoadModule(Sender: TObject);

begin
{ When a module is loaded, retrieve its caption and

create its tabs on the TTabControl component based on
its captions. Also, get its icon. }

Caption := FModuleManager.CurrentModule.ModuleDescripton;
27 June 1999 Delphi Informant
tbcMain.Tabs.Assign(

FModuleManager.CurrentModule.ViewCaptions);

// Invoke the call to open the first view.
tbcMainChange(nil);
Icon := FModuleManager.CurrentModule.ModuleIcon;

end;

procedure TMainForm.BeforeUnloadModule(Sender: TObject);

var
M: TMemoryBasicInformation;

i: Integer;

begin
{ Before unloading a module, we must free any hanging

component provided by the module. }
if FModuleManager.CurrentModule <> nil then begin

for i := Application.ComponentCount - 1 downto 0 do
begin

VirtualQuery(GetClass(

Application.Components[i].ClassName),

M, SizeOf(M));

if (FModuleManager.CurrentModuleHandle = 0) or
(HMODULE(M.AllocationBase) =

FModuleManager.CurrentModuleHandle) then
Application.Components[i].Free;

end;
Caption := 'Xapware Shell Application';

tbcMain.Tabs.Clear;

Icon := Application.Icon;

end;
end;

procedure TMainForm.mmiExitClick(Sender: TObject);

begin
Close;

end;

procedure TMainForm.mmiAboutClick(Sender: TObject);

begin
cbMain.Bands[2].Control := nil;

end;

end.

End Listing One
Begin Listing Two — XWMod01Intf.pas
unit XWMod01Intf;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, ExtCtrls, Menus, XWModExpt, xwViewFrm,

ComCtrls, Mod01MgrFrm;

type
TXWMod01Interface = class(TXWModuleInterface)
private

FViewCaptions: TStringList;

FModuleIcon: TIcon;

FModuleToolBar: TToolBar;

FModuleMgrForm: TMod01MgrForm;

private
procedure ModuleViewsMenuOnClick(Sender: TObject);

protected
function GetModuleCaption: string; override;
function GetModuleDescription: string; override;
function GetModuleFileName: string; override;
function GetModuleIcon: TIcon; override;
function GetModuleToolBar: TToolBar; override;
function GetModuleLevelMenu: TPopupMenu; override;
// View Methods.
function GetViewCount: Integer; override;
function GetViewDescriptions: TStringList; override;
function GetViewCaptions: TStringList; override;

Patterns in Practice
function GetCurrentView: TViewForm; override;
public

constructor Create(AParentWindow: TWinControl;

AModuleLevelMenuParent: TMenuItem;

AModuleLevelTBParent: TPanel); override;
destructor Destroy; override;
function CanSwitchModules: Boolean; override;
function ModuleLogOn(const AUserName,

APassword: string; const LenderID: Integer):

Boolean; override;
function GetView(const AIndex: Integer;

AWithParent: Boolean): TViewForm; override;
procedure CloseView; override;

end;

implementation

uses
DemoFrm1, DemoFrm2;

const
{ : Specify a valid form count. }
FViewCount = 2;

{ TXWMod01Interface. }

function TXWMod01Interface.CanSwitchModules: Boolean;

begin
// Pass true as a default for this example.
Result := True;

end;

procedure TXWMod01Interface.CloseView;

begin
if FCurrentView <> nil then begin

UnloadViewLevelMenu;

FCurrentView.Free;

FCurrentView := nil;
end;

end;

constructor TXWMod01Interface.Create(

AParentWindow: TWinControl;

AModuleLevelMenuParent: TMenuItem;

AModuleLevelTBParent: TPanel);

var
MenuItem: TMenuItem;

i: Integer;

begin
inherited Create(AParentWindow, AModuleLevelMenuParent,

AModuleLevelTBParent);

FCurrentView := nil;
FModuleIcon := TIcon.Create;

// The icon is stored in the resource file for the
// module. Retrieve it.
FModuleIcon.Handle := LoadIcon(hInstance, 'MODULE1');

// Create a TStringlist of Captions for each view
// in the system.
FViewCaptions := TStringList.Create;

FViewCaptions.Add('Module 1 Demo Form 1');

FViewCaptions.Add('Module 1 Demo Form 2');

FModuleLevelMenu := TPopupMenu.Create(nil);
// Add Menu items for each module.
for i := 0 to FViewCaptions.Count - 1 do begin

MenuItem := TMenuItem.Create(FModuleLevelMenu);

MenuItem.Caption := FViewCaptions[i];

MenuItem.OnClick := ModuleViewsMenuOnClick;

FModuleLevelMenu.Items.Add(MenuItem);

end;
{ Create the management form used for centralizing some

logic and for design-time manipulation of visual
components used with this module. Otherwise, I'd have
to programmatically create these components and set
their properties. It's easier to just use them off this
hidden form. }

FModuleMgrForm := TMod01MgrForm.Create(Application);

end;
28 June 1999 Delphi Informant
destructor TXWMod01Interface.Destroy;

begin
FModuleLevelMenu.Free;

FModuleIcon.Free;

FViewCaptions.Free;

if FCurrentView <> nil then
FCurrentView.Free;

FModuleMgrForm.Free;

inherited;
end;

function TXWMod01Interface.GetModuleCaption: string;
begin

Result := Format('Module %s', [ClassName]);

end;

function TXWMod01Interface.GetModuleDescription: string;
begin

Result := 'TXWMod01Interface Module Description';

end;

function TXWMod01Interface.GetModuleFileName: string;
begin

Result := 'XWMod01Intf.pas';

end;

function TXWMod01Interface.GetModuleIcon: TIcon;

begin
Result := FModuleIcon;

end;

function TXWMod01Interface.GetModuleToolBar: TToolBar;

begin
Result := FModuleMgrForm.ToolBar1;

end;

function TXWMod01Interface.GetModuleLevelMenu: TPopupMenu;

begin
Result := FModuleLevelMenu;

end;

function TXWMod01Interface.GetViewCaptions: TStringList;

begin
Result := FViewCaptions;

end;

function TXWMod01Interface.GetViewCount: Integer;

begin
Result := FViewCount;

end;

function TXWMod01Interface.GetViewDescriptions:

TStringList;

begin
Result := nil;

end;

function TXWMod01Interface.ModuleLogOn(

const AUserName, APassword: string;
const LenderID: Integer): Boolean;

begin
// This could provide logic to perform a database logon.
Result := True;

end;

procedure TXWMod01Interface.ModuleViewsMenuOnClick(

Sender: TObject);

begin
ShowMessage(Sender.ClassName);

end;

function TXWMod01Interface.GetView(const AIndex: Integer;

AWithParent: Boolean): TViewForm;

begin
if ((AIndex >= FViewCount) or (AIndex < 0)) then

raise Exception.Create('Invalid view index');

Patterns in Practice
if FCurrentView <> nil then
FCurrentView.Free;

{ This method will create the view as both a child window
and as a regular form depending on the value
of AWithParent. }

if (AWithParent = True) and (FViewParentWindow<>nil) then
case AIndex of

0: FCurrentView := TDemoForm1.Create(

Application, FViewParentWindow);

1: FCurrentView := TDemoForm2.Create(

Application, FViewParentWindow);

end
else

case AIndex of
0: FCurrentView := TDemoForm1.Create(Application);

1: FCurrentView := TDemoForm2.Create(Application);

end;
Result := FCurrentView;

end;

function TXWMod01Interface.GetCurrentView: TViewForm;

begin
Result := FCurrentView;

end;

initialization
RegisterClass(TXWMod01Interface);

finalization
UnRegisterClass(TXWMod01Interface);

end.

End Listing Two
29 June 1999 Delphi Informant

30 June 1999 Delphi Informant

New & Used

By Alan C. Moore, Ph.D.

Figure 1: Youseful’s powerful
basic decisions in building you
vides the means to create file
Youseful
Bill White’s Useful Installation Creation System

Many of you have used one of the two leading installation applications: InstallShield
and Wise Installation System. I’ve used the latter, and found it convenient for

many situations. Something has troubled me for the longest time, though: Why had no
one developed a native-VCL, component-based, installation system? Well, someone has.
Bill White Software Production’s powerful collection of installation components gives you
all the power and flexibility of the two major products, but allows you to work exclusively
within the Delphi environment.

This tool, Youseful, offers three ways to distrib-
ute your application: traditional (disk-based),
Internet-based, and hybrid. With the traditional
approach, you create a self-extracting .EXE file
containing the installation routine and all the
files that make up your application. If you plan
to distribute your application on floppies, and
the self-extracting executable won’t fit on one
floppy, you can use a series of floppies. With
Internet distribution, users can use their browsers
to install the software directly from an Internet
site by clicking on its link. The user doesn’t have
to first download a self-extracting .EXE and then
run it, so the process is straightforward.
 eight-page Wizard allows you to make all of the
r installation. For example, the Groups page pro-
groups on the user’s machine.
Hybrid distribution has elements of both. First,
Youseful creates a self-extracting .EXE containing
the installation routine, but not all the files your
application will need. Users will need to down-
load the additional files from one or more
remote servers. One of the great advantages of
this approach is that the size of the self-extracting
.EXE can be kept very small, i.e. 200-300KB.

A Super Component with a Powerful
Component Editor
The core of the Youseful library is the TInstall
component. By simply dropping a TInstall com-
ponent on a form, double-clicking the compo-
nent to bring up the component editor, and set-
ting the preferences, you can produce your
installation routine quickly and easily. This
component editor is actually a complex Wizard
with up to 16 pages, allowing you to make all
necessary decisions (see Figure 1). The Wizard
automatically adds the components you need to
execute the particular kind of installation
system you need. This library also includes
two Help systems: a standard Windows Help
system that provides information on all of the
components, and an HTML Help file that
includes several helpful tutorials. I completed
the main tutorial quite quickly and found it
provides an excellent introduction to the
library’s commonly-used features.

The first page in the Install component dialog
box, Welcome, gives you the opportunity to enter
general data used throughout the Wizard: your
company’s name, the product’s name, and the

Youseful Wise

VCL-based Script-based
Yes Yes

 appearance Yes Yes
Yes Yes

s Yes Yes
Yes Yes; provides more network options

t folders Yes Yes
 patch utility No Yes, in Enterprise edition

Yes Yes
 installations Yes Yes, in Enterprise edition

 to the Wise Installation System.

New & Used
product’s version. It also allows you to add password protection to
your installation routine, and select one of over 14 languages to use.

The Appearance page allows you to control the appearance of your
installation program by selecting various components and setting
their properties. Most of this can be done from within this Wizard.
On this page, you must select either the Maximize Window or Hide

Window options. In the former case, your installation application
will occupy the whole screen while the various dialog boxes appear.
In the latter case, only those dialogs boxes appear. The background
window can contain a backdrop (which could be dithered, as has
become customary), a product label, and/or a billboard.

The Groups page allows you to establish various file groups
(folders/directories) that will be created on the user’s machine, as well as
set properties for them (again, see Figure 1). Those properties include
Install path, Dialog options, Description, and Install types. The Install
path is the directory in which files will be installed; Description is used
in the file group selection dialog box to help users determine if they
wish to install the particular file group; Install types determines in
which types of installations the file group will be included. Install types
include all the common ones: Full, Compact, Typical, and Always.

The Registry page gives you the opportunity to automatically add
appropriate keys to the Windows registry. In the top window, you
enter a root key (e.g. hkCurrentUser, hkLocalMachine, etc.) and the
key path for each entry. In the lower window, you enter the value of
the key. By right-clicking on these panes, you’re generally prompted to
make the next required decision. The whole process is very smooth.

The Shortcuts page allows you to establish shortcuts during the installa-
tion of your application. You can easily create desktop shortcuts to files
(including URLs), but you can’t create such shortcuts to folders without
some coding. This is one of the few limitations in this library. You can
add a new group to the Start menu, which will appear at the top of the
menu, or you can add an application to the Startup folder.

The Dialogs page allows you to add a number of built-in and cus-
tom dialog boxes to your installation. Youseful supports four dia-
log sequences and two dialog events. Dialog sequences involve one
or more dialog boxes connected in such a way that the user can
move forward or backward in the sequence. Dialog events display
special dialog boxes that would not generally be part of the browse
sequence but that need to be presented to the user in certain cir-
cumstances. These circumstances include indicating that files are
being installed and prompting the user to insert a disk.

The four types of sequences are:
1) before any files are installed,
2) following a successful

installation,
3) following an unsuccess-

ful installation, and
4) prompting the user with

the option to reboot the
computer.

With Delphi, you can add
dialog boxes to your installa-
tion as project forms, allow-
ing you to customize them.
If you make changes to
Youseful’s dialog boxes, those

Feature

Type of tool
Uses comprehensive wizard
Allows customization of installation’s
Includes standard dialog boxes
Supports adding custom dialog boxe
Supports installation of BDE
Supports file groups, specifying targe
Supports “intelligent” upgrades with
Supports uninstall
Supports Web-based and traditional

Figure 2: A comparison of Youseful
31 June 1999 Delphi Informant
changes will be local and affect
only the project you’re creating.

The last two pages — Loading and
Builder — complete the process.
The Loading page allows you to
specify whether TInstall will auto-
matically install when the user runs
the program (by setting the
RunAutomatic property), and
whether a Loader program will be
used. If the latter option is chosen, a
Setup.exe file (self-extracting) will be
created that contains the application
files, the installation project, and
pre-setup files that you can specify
on this Wizard page. The Builder
page automatically saves all your
work and compiles/builds the setup
project. This convenient automation
feature is something that could be
emulated in other single-purpose
component libraries.

There are several other pages
available in Youseful’s Wizard that support less-used features. As
with the pages we’ve already discussed, the functionality is usually
implemented by adding properties to your main form.

The Internet page is only needed if you plan to distribute your
application via the Internet. On this page, you define the path to
the server from which the files in your installation will be installed.
The INI page allows you to make entries to an .INI file. Two more
pages (BDE and Aliases) allow you to install all or part of the BDE,
and work with aliases on the user’s computer. A new page has been
added with version 4, enabling you to install ODBC as part of your
installation. Some of the options on these pages affect properties of
the main TInstall component rather than add additional compo-
nents to the main form.

The TInstall component also includes events and methods for
customizing the behavior of the installation. In addition to the
main TInstall component, Youseful includes other components
that work in concert with, and are generally installed automati-
cally by, the main component’s wizard. These include compo-
nents to help you use the BDE, and compress or decompress
files. There are other file-related components, including one to
manage .INI files, a registry-manipulating component, link-man-
aging components, etc.

Youseful is a VCL-based installation
tool that supports three ways to distrib-
ute an application, including over the
Internet. Its powerful Wizard leads you
through the process of creating an
installation project from beginning to
end, including saving and compiling.
You can fully customize an installation’s
appearance, use standard or custom
installation dialog boxes, install the
BDE, work with .INI files or the registry,
establish file groups, and permit users
to uninstall your application.

Bill White Software Productions
3117 Raymond Drive
Atlanta, GA 30340

Phone: (770) 457-1225
E-Mail: support@youseful.com
Web Site: http://www.youseful.com
Price: US$99 (includes 16- and 32-bit
versions). Major upgrades are US$25;
minor upgrades are free. Available in a
shareware version.

http://www.youseful.com

New & Used
Comparing Youseful
Some readers might be interested in a comparison between
Youseful and one or both of the popular tools I mentioned at the
beginning of this review. As mentioned, I have a very high opin-
ion of the Wise Installation System (see Bill Todd’s review in the
October, 1998 issue of Delphi Informant for an excellent assess-
ment). Figure 2 shows a comparison of some of the major fea-
tures of the two products.

You’ll notice that Youseful compares favorably with Wise. Still, in
some circumstances, you may need something like the Wise
Enterprise edition to solve problems. For example, I know of several
developers who use Wise’s patch facility to simplify the process of
upgrading an application or tool.

Conclusion
The overriding appeal of Youseful is its component-based approach.
If you prefer to do most of your development in Delphi, you should
take a look at this product (available in a shareware version). Its
powerful and extremely Youseful Wizard places it in a select group
of RAD tools, making it an excellent model for future component
libraries. I strongly recommend it. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he special-
izes in writing custom components and implementing multimedia capabilities in
applications, particularly sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.
32 June 1999 Delphi Informant

33 June 1999 Delphi Informant

Case Study

By Chris Vandersluis

Figure 1: The Filter Table
Keeping Time with Delphi
HMS Software Uses Delphi to Rewrite TimeControl

In 1995, HMS Software undertook a complete rewrite of its commercial timesheet
system, TimeControl — a highly flexible and deployable commercial timekeeping

solution. Having evaluated several development platforms, including Microsoft Visual
C++, HMS chose Delphi Client/Server as the tool for its TimeControl 3. HMS based this
decision on Delphi’s strength in client/server tool sets, and its ability to directly support
several target databases through SQL Links.
Founded in 1984, HMS Software specializes in
implementing project control systems, and has
frequently been asked to create department-wide
timesheets for integration into the project-
management process. The numerous timekeeping
systems HMS created in its first decade were writ-
ten in xBASE, starting with dBASE and ending
with Microsoft Visual FoxPro in later years.

TimeControl was in its second incarnation when
the TimeControl 3 project began. The first
Windows version, TimeControl 2, was released in
1995 as a port from FoxPro for DOS to FoxPro for
Windows. Even before the release of TimeControl
2, however, it was apparent the product would
require an architectural change if it were to contin-
ue to grow. “The easiest thing for us would have
been a port to FoxPro,” said Stephen Eyton-Jones,
Director of Technical Services for HMS. “We even
did some prototyping in VFP. The problem was, it
just didn’t provide the tools we needed, or the per-
formance required for this kind of application.”
dialog box in TimeControl.
The Issues
The design constraints on TimeControl 3 were
extensive. First, because a corporate timesheet system
is perhaps the only database application in the enter-
prise likely to be distributed to every employee, it
must be highly deployable. Second, as an enterprise-
wide product, the database architecture would have
to support the target architecture of the market. In
the case of TimeControl, the requirement was sup-
port for multiple databases, including FoxPro,
Oracle, Microsoft SQL Server, InterBase, Sybase,
and Access. FoxPro would also provide support for
legacy systems. Because these systems would be
installed “sight unseen,” provision of an installation
script was necessary to allow for effortless installation
by the client, regardless of the database.

Data security represented a third issue. As a
financially-oriented system, the TimeControl
database structure must protect the data itself.
Also, access to information within the applica-
tion must be on an as-needed basis. Some data
would be unavailable to some users, and some
would be made available in a read-only format.

Finally, reporting would have to be in a format
familiar to financial personnel, but offer enough
flexibility to meet both finance and project man-
agement requirements. For example, TimeControl
3 would have to be able to dynamically link to
several commercial project-management schedul-
ing systems, including Microsoft’s Project,
Primavera’s P3, and Welcom’s Open Plan.

Installation
Because installation was a major issue, HMS select-
ed Wise Installation System. Custom database script

Figure 2: TimeControl’s Timesheet Entry dialog box.

Case Study
dialog boxes were required to
allow users to select a database,
then prompt for the necessary
BDE settings. At that time, nei-
ther InstallShield nor Wise
Installation System included all
the functionality required to sup-
port multiple BDE entries.
Therefore, HMS had to do signifi-
cant modifications involving over
20 registry settings. Also, docu-
mentation for such an installation
was non-existent. (Advances in
later versions of both products
have since simplified this process.)

Architecture
The early stages of development
presented some immediate chal-
lenges. With all the databases that
were supported, Query compo-
nents were the best available
method of interacting with the
tables. However, each database
carried its own quirks on how the
ANSI92 standard for SQL queries

was interpreted. In particular, reporting and timesheet-validation rou-
tines required an easy, menu-driven filtering capability where filters
might even be defined within other filters.

For example, a filter name might be, “Show all timesheets where
overtime was charged.” A more complex filter might build upon
this, e.g. “Of the timesheets where overtime was charged, show only
those charged by salaried employees.” The Filter Table dialog box
would show fields, appropriate operators — such as “equals,” “con-
tains,” “not empty,” and “begins with” — and the corresponding
values (see Figure 1). More complex statements were permitted by
allowing new lines preceded by “and,” “or,” and “or not” operators.

The Filter Table dialog box would have to resolve to a valid SQL
statement. However, because each database might (and often does)
require a unique syntax of that statement, HMS developed a SQL
Generator that first checks BDE settings to determine what database
is in use, then generates the proper SQL statement for that database.

Security
TimeControl includes salary information for all staff. Therefore,
HMS had to ensure that data was secure. Access to raw data is con-
trolled by a “gateway” database, with only one table of two columns.
An encrypted username and password are stored in the table’s single
record. This username/password combination is used to access the
main database, allowing DBAs to provide more specific access to dif-
ferent data elements of the main database as required.

From an application standpoint, TimeControl includes functionality
grouped into user profiles (see Figure 2). These profiles include lists
of exceptions to controls viewable by the user. User profiles are
linked to the user table and accessed during the log-on process. A
user profile may contain menu items, report items, and even field
items that are to be restricted.

Any field in TimeControl can be declared “read-only,” “value-
hidden,” or “invisible” within the profile. Read-only is exactly as it

HMS is a provider of high-quality,
leading-edge project management
products and services, enabling orga-
nizations to be more effective. HMS
released its first iteration of
TimeControl in 1994. Now a full
client/server system, TimeControl
works for firms of all sizes from sever-
al employees, to several hundred, to
several thousand. The new design
allows for many new functions to be
added to the system, including links to
additional project management sys-
tems, and the ability to interface or
integrate with major financial systems.

Third-party tools: Delphi, Wise
Installation System, Formula One.

HMS Software
1000 St-Jean, Suite 711
Pointe Claire, QC H9R 5P1
Canada
Phone: (514) 695-8122
Fax: (514) 695-8121
Web Site: http://www.hmssoftware.ca
34 June 1999 Delphi Informant
sounds: The field label and value are visible, but the value can’t be
changed by users with this profile. Value-hidden means that the
field label is visible, as is the control for the value, but the value
itself isn’t displayed. An invisible property would make both the
field label and the field value invisible. These properties are read as
dialog boxes are created, making each dialog box, grid, or report in
the system a customizable item. Administrators might use this
functionality to make a “project rate” visible, while concealing an
“actual rate” or “payroll rate.”

Reporting
For reporting, HMS used Visual Components’ Formula One for
final presentation, and a report wizard to pre-condition the data.
Although Formula One offers a choice of either sending the data
via ODBC or populating the cells directly as objects, HMS was
committed to avoiding ODBC as much as possible. Therefore,
after the data was conditioned using a report wizard, the infor-
mation was inserted into each cell in turn until the report was
ready to be presented.

Happy Ending
Since its release in January, 1998, market acceptance of
TimeControl 3 has been spectacular. Major organizations, such as
Anderson Consulting, Bombardier/Canadair, Credit Suisse/First
Boston Bank, EDS, and the US Navy, have adopted the system.
The attraction lies primarily in its architecture and ability to
adapt to the client’s database standard.

Development for TimeControl 3 has now shifted toward an even
greater degree of deployability. Scheduled for release in early
1999, TimeControl 3.1 includes a Java interface written using
Inprise’s JBuilder Client/Server edition. Designed in a true,
three-tiered architecture, TimeControl on Java includes a pure
Java middle tier connecting to the database using JDBC (or, in
the case of SQL Server, the JDBC/ODBC Bridge). RMI is used
to connect to a thin applet. The applet, designed to run in
almost any browser, is paper-thin, running about 50KB in size.
Data controls have all been placed in the middle-tier application,
ensuring that there is no need to compromise data security by
leaving an open port through the firewall.

So far, only the TimeControl timesheet itself has been created in
this environment. Initial response to the new architecture is so
positive, however, that HMS has already identified it as key to
future development. Applications like TimeControl are most

http://www.hmssoftware.ca

Case Study
attractive to the marketplace when they include both a
client/server application and a browser interface. Delphi and
JBuilder have enabled HMS to deliver both. ∆

Chris Vandersluis is the president of HMS Software, based in Montreal, Canada.
He has been involved in the automation of project control environments since
1983 and has been published in a variety of publications, including Fortune
Magazine and Computing Canada. He can be reached at
chrisv@hmssoftware.ca.
35 June 1999 Delphi Informant

File | New
Directions / Commentary
Together at Last: Borland and Project JEDI

Is there any long-time Borland developer who did not feel at least a little anxiety when the company decided to
change its name to Inprise? Is there anyone familiar with Project JEDI — who has witnessed its ups and downs and

its near disappearance — who is not pleasantly surprised that we are still talking about this important voluntary initia-
tive? Even more, is there anyone who could have predicted that after a year and a half of its rather tenuous existence
that it is now on the brink of its most important initiative? Recent developments at Inprise and Project JEDI are inter-
twined in interesting ways.
When Inprise announced it was splitting into two divisions, includ-
ing the Web-based “Borland Division,” it received mixed reviews in
some of the Internet discussion groups. Because the reorganization
entailed laying off a number of employees, one could view the glass
as “half full” or “half empty.” For some, it portended an intermediate
step toward Inprise divesting itself of its development tools —
Delphi, C++Builder, and JBuilder — so that it could concentrate
fully on its other objectives. For others, however, it indicated at least
the possibility that Inprise was ready to demonstrate in a meaningful
way that it recognized the importance of its developer base.

It does feel good to be able to say “Borland” again. But the new initia-
tive at Inprise seems more than cosmetic. The new developments in
Project JEDI and its partnership with Borland are even more encour-
aging. It seems Borland folks have been lurking on the JEDI discus-
sion thread for a long time, considering when the best time might be
to get involved. As I have stated on several occasions in the past, this
project has had its ups and
downs. That is understand-
able, given its voluntary nature
and the busy lives we develop-
ers tend to live. So, one of the
considerations that must have
affected Borland’s decision was
making certain that there was an administrative structure in place that
would make any joint endeavors workable.

Project JEDI has been largely dormant for several months while sev-
eral of us committed to the project have continued to discuss ways
to get it “moving again.” In the past six months, a new leader has
emerged: Thomas Guarino. A developer who lives in Indiana, Tom
has been working hard to keep the Project moving forward. He
recently invited several of us to be a part of a new administrative
group, including Michael Beck of Ohio and another founding JEDI
leader, Helen Borrie of Australia.

Among others involved in the new initiative are two very well-
known Delphi figures, both of whom are making important contri-
butions: Charlie Calvert and Bob Swart. Bob has been a strong and
important supporter of the Project from the beginning, making his
36 June 1999 Delphi Informant
Header Conversion tool freely available to JEDI conversion teams.
He has promised to revise that tool to handle the new specification
required for those conversions, which Borland will distribute.

Charlie has become, in effect, the liaison between Project JEDI and
the Delphi R&D Team. He is also very visible at the new Borland
site with his Tech Voyage page, http://www.borland.com/techvoyage,
which includes a number of his articles on a variety of Delphi and
C++Builder topics. There’s a link on that page to a description of the
Borland JEDI Initiative at http://www.borland.com/techvoyage/
jediinitiative.html. For the latest on Project JEDI, be sure to visit
the Project JEDI Web site at http://www.delphi-jedi.org.

One of the first challenges for the project concerned the stringent
requirements that a conversion must meet to receive Borland’s endorse-
ment. While there was a lively discussion about this among the admin-
istration team, and later on the JEDI discussion thread, most seemed to

understand the need to accept the
specification. At the same time,
Project JEDI will maintain its
autonomy and identity. As I write
this, many things are still in a
state of flux. However, regardless
of the level of success of this joint

venture between Borland and Project JEDI, I believe we can draw one
conclusion from it: The Delphi community — both within Borland
and among those who depend upon it for their outstanding tools —
continues to show signs of vitality and innovation. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years. He
has published a number of articles in various technical journals. Using
Delphi, he specializes in writing custom components and implementing
multimedia capabilities in applications, particularly sound and music. You
can reach Alan on the Internet at acmdoc@aol.com.

http://www.borland.com/techvoyage
http://www.borland.com/techvoyage/jediinitiative.html
http://www.borland.com/techvoyage/jediinitiative.html
http://www.delphi-jedi.org

	Table of Contents
	Delphi Tools
	Wise Introduces Wise for Windows Installer
	Atypie Introduces Zip Office 98
	HyperAct Launches eAuthor DB 1.0
	InnerMedia Ships DynaZIP-AX 4.0
	Agni Software Releases Hawk Eye 4
	Fe Software & Development Announces PIM Flash Components
	Peter Tiemann and HREF Offer SourceCoder 2.56
	SkyLine Tools Announces Barcode Recognition Suite 1.0
	Pegasus Announces Smartscan Xpress BARCODE
	Andy Gibson Releases Renderlight

	Delphi News
	borland.com and Marotz Team for Record Delphi Certification
	borland.com Announces Borland C++Builder 4
	Inprise Licenses Visual dBase to KSoft
	Free Web Site Helps Computer Job Hunters
	Inprise Announces Repurchase of One Million Shares
	Inprise Announces 10th Annual Inprise and borland.com Conference

	On the Cover
	Design
	Development
	Build Task One: Create an ActiveForm Shell
	Build Task Two: Transplanting the Code
	Deployment
	Link It All In
	Conclusion

	DBNavigator
	Overview of ASCII Files
	Reading Simple Text Files
	Using Fixed-length ASCII Files
	Using Delimited ASCII Files
	Final Notes
	Conclusion

	On the 'Net
	Pascal Source
	Stylish HTML
	Directory Structure
	HTML Frameset
	Frameset Designer
	Changing Properties
	Display and Generation
	Conclusion
	Begin Listing One — Directory structure to HTML

	Patterns in Practice
	Pattern Classifications
	Pattern Descriptions
	Participants
	Structure Description
	Known Uses
	Add-in Packages Example
	Package Layout for the Shell Application
	Add-in Builder Structure Description
	Loading and Unloading Packages
	Class Name Retrieval of the Module Interface Class
	Instantiating Classes Contained in Packages
	Menu Merging
	Conclusion
	Sources
	Begin Listing One — MainFrm.pas
	Begin Listing Two — XWMod01Intf.pas

	New & Used
	A Super Component with a Powerful Component Editor
	Comparing Youseful
	Conclusion

	Case Study
	The Issues
	Installation
	Architecture
	Security
	Reporting
	Happy Ending

	File I New

